CEC Series

Precision
Stability
Decoupling
  • Miniaturization
  • High-Rel capacitors
  • High thermal and voltage stability
  • Capacitance
390pF ~ 470nF
  • Tolerance
±1%, ±2%, ±5%, ±10%, ±20%
  • Mounting
SMD
  • Operating Temp
-55°C ~ 125°C
  • RoHS
ROHS, Non ROHS
  • Voltage Rated DC
10V ~ 1000V
  • Case size
402, 403, 603, 504, 805, 907, 1005, 1206, 1210, 1605, 1806, 1812, 1825, 2210, 2220, 2225, 2528, 3030, 3040

Typical applications :

  • Decoupling
  • Precision
  • Filtering

 

The below Part Numbers reflect our high runners only
Please contact us if you can't find your specifications.

PN
Capacitance
Voltage Rated AC
Tolerance
Mounting
Operating Temp
RoHS
Voltage Rated DC
Case size
CEC1 - C - - - 15pF +/-5% 63 V - - 15pF - ±5% SMD - Non ROHS 63V 0504
CEC1 - C - - - 15pF +/-5% 63 V S8 - 15pF - ±5% SMD - Non ROHS 63V 0504
CEC1 - - - - 100pF +/-5% 63 V S8 - 100pF - ±5% SMD - Non ROHS 63V 0504
CEC1 - - - - 270pF +/-5% 63 V 270pF - ±5% SMD - Non ROHS 63V 0504
CEC1 - - - - - 109 D 101 - - 1pF - ±0.5pF SMD - Non ROHS 100V 0504
CEC1 - - C - - - 10pF +/-10% 100 V BA - 10pF - ±10% SMD - Non ROHS 100V 0504
CEC1 - - - - - 47pF +/-10% 100 V - - 47pF - ±10% SMD - Non ROHS 100V 0504
CEC12 - - G W - F 223 M 100 - - 22000pF - ±20% SMD - ROHS 10V 1206
CEC12 - - 02 - - S 27nF+/-1% 10 V - Lev FM 27000pF - ±1% SMD - Non ROHS 10V 1206
CEC12 - - 02 - - S 2100pF +/-1% 16 V - Lev FM 100pF - ±1% SMD - Non ROHS 16V 1206
CEC12 - - 04 - - S 162pF +/-1% 16 V - Lev FM 162pF - ±1% SMD - Non ROHS 16V 1206
CEC12 - - 02 - - S 750pF +/-1% 16 V - Lev FM 750pF - ±1% SMD - Non ROHS 16V 1206
CEC12 - - 04 - - S 392 F 160 - Lev FM 3900pF - ±1% SMD - Non ROHS 16V 1206
Compliance and certifications
certification
CECC
certification
ESA
Would you like to ajust a little something?

Customize it

You may also be interested in

CNC Series

CNC Series

Non magnetic Chips

Non magnetic Chips

OP Series

OP Series

CER / CNR Series

CER / CNR Series

Custom Design

Easy-way to create
Not boring but very quick...

Frequently Asked Questions

Find answers to the most frequently asked questions about our products and services.
What is Ceramic Capacitors

Excellent temperature resistance, high volume/capacitance ratio, electrical properties and reliability make Exxelia's ceramic capacitors ideal for a wide range of fields of application including medical implants, aircraft flight controls, switched-mode power supply in harsh environments, core samplers for petroleum exploration, and space vehicles. Exxelia also offers Hyper Frequency ceramic capacitors with optimized size and very low ESR. 

These HiQ capacitors offer excellent performance levels for RF applications requiring functional reliability. Typically these applications include civil and military telecommunications (cellular base station equipment, wireless broadband service, Point to-Point or Multipoint radios, radio broadcasting equipment), and MRI coils.

How is Ceramic used in Capacitors ?

Ceramic chips are created with binders and solvents added to a specified ceramic powder. The slurry created is dried, forming a sheet or tape of ceramic material. Metal powder is mixed with solvents and additional ceramic material to create a liquid electrode. The liquid is then printed onto the ceramic layer. Layers of the ceramic sheets are stacked and laminated to form a solid structure.

The solid structure is cut into the desired size. Once cutting is complete, the assembly must be kiln fired. The temperature used in the firing process is critical in determining the capacitor’s characteristics. The process is similar for disc and chip styles. Disc capacitors use long leads to mount through circuit boards. Chips use surface mount technology.

High Temperature Capacitors

Exxelia has a long history providing high temperature capacitors to various industries. Several dielectrics, such as plastic (PTFE; PI; & PEI), reconstituted mica, aluminum electrolytic, tantalum and ceramic are used for manufacturing high temperature capacitors. Many are impregnated with solid thermo-setting resins such as epoxy, polyester or silicone.

These technologies provide very high stability of mechanical and electrical characteristics with temperature capabilities of -55°C to as high as +230°C, depending on the dielectric technology, and some do not require voltage de-rating. Rated voltages span from 30 VDC to as high as 60,000 VDC with capacitance ranges 100pF to 30µF.

Still have questions ?
Can’t find the answer you’re looking for ? Please contact with our customer service.
Contact