• High Rel capacitors
  • Radial leaded
  • Capacitance
10pF ~ 1µF
  • Tolerance
±10%, ±20%
  • Mounting
Radial
  • Operating Temp
-55°C ~ 125°C
  • RoHS
ROHS, Non ROHS
  • Voltage Rated DC
25V ~ 250V

Typical applications : 

  • DC Filtering
  • Decoupling

 

The below Part Numbers reflect our high runners only
Please contact us if you can't find your specifications.

PN
Capacitance
Voltage Rated AC
Tolerance
Mounting
Operating Temp
RoHS
Voltage Rated DC
CK05 - - - - - 22nF +/-10% 50 V - - 22000pF - ±10% Radial - Non ROHS 50V
CK05 - - - - - 27nF +/-10% 50 V - - 27000pF - ±10% Radial - Non ROHS 50V
CK05 - - - - - 33nF +/-20% 50 V - - 33000pF - ±20% Radial - Non ROHS 50V
CK05 - - - - - 47nF +/-10% 50 V - - 47000pF - ±10% Radial - Non ROHS 50V
CK05 - - - - - 100nF +/-10% 50 V - - 100000pF - ±10% Radial - Non ROHS 50V
CK05 - - - - - 0.1µF +/-20% 50 V - - 100000pF - ±20% Radial - Non ROHS 50V
CK05 - - - - - 2.2nF +/-10% 100 V - - 2200pF - ±10% Radial - Non ROHS 100V
CK05 - - - - - 3.3nF +/-10% 100 V - - 3300pF - ±10% Radial - Non ROHS 100V
CK05 - - - - - 4.7nF +/-10% 100 V - - 4700pF - ±10% Radial - Non ROHS 100V
CK05 - - - - - 5600pF+/-10% 100 V - - 5600pF - ±10% Radial - Non ROHS 100V
CK05 - - - - - 10nF +/-10% 100 V - - 10000pF - ±10% Radial - Non ROHS 100V
CK05 - - - - - 47pF +/-20% 200 V - - 7pF - ±20% Radial - Non ROHS 200V
CK05 - - - - - 22pF +/-20% 200 V - - 22pF - ±20% Radial - Non ROHS 200V
Compliance and certifications
certification
CECC
Would you like to ajust a little something?

Customize it

Frequently Asked Questions

Find answers to the most frequently asked questions about our products and services.
What is Ceramic Capacitors

Excellent temperature resistance, high volume/capacitance ratio, electrical properties and reliability make Exxelia's ceramic capacitors ideal for a wide range of fields of application including medical implants, aircraft flight controls, switched-mode power supply in harsh environments, core samplers for petroleum exploration, and space vehicles. Exxelia also offers Hyper Frequency ceramic capacitors with optimized size and very low ESR. 

These HiQ capacitors offer excellent performance levels for RF applications requiring functional reliability. Typically these applications include civil and military telecommunications (cellular base station equipment, wireless broadband service, Point to-Point or Multipoint radios, radio broadcasting equipment), and MRI coils.

How is Ceramic used in Capacitors ?

Ceramic chips are created with binders and solvents added to a specified ceramic powder. The slurry created is dried, forming a sheet or tape of ceramic material. Metal powder is mixed with solvents and additional ceramic material to create a liquid electrode. The liquid is then printed onto the ceramic layer. Layers of the ceramic sheets are stacked and laminated to form a solid structure.

The solid structure is cut into the desired size. Once cutting is complete, the assembly must be kiln fired. The temperature used in the firing process is critical in determining the capacitor’s characteristics. The process is similar for disc and chip styles. Disc capacitors use long leads to mount through circuit boards. Chips use surface mount technology.

Do I Need Highly Reliable, High Temp Capacitors?

The main goal of high temperature capacitors is to allow for stable performance of electrical equipment at high temperatures. They are also involved heavily in applications that require a high level of reliability. Though there are a wide variety of different capacitors and types of technologies that are available depending on the needs of the situation, only a few are available that can operate in a reliable way once temperatures become elevated. 

High temperature capacitors made out of materials like ceramic or tantalum are usually employed when an application begins to operate at a temperature near or above 350 degrees Fahrenheit.

Still have questions ?
Can’t find the answer you’re looking for ? Please contact with our customer service.
Contact