Larger Batches of High Q-Factor Dielectric Resonators

Exxelia can now produce larger batches of its E7000 series for increased cost-effectiveness. Designed for high-end filters where Q-factor is critical, especially in space or military applications, the E7000 series of dielectric resonator features tremendous properties.


Dielectric resonators are designed to replace resonant cavities in microwave functions such as filters and oscillators. Exxelia with the support of ESA and CNES developed the E7000 series that provides a narrow bandwidth with smaller size. E7000 is Ba-Mg-Ta materials based that combines an ultra-high Q-factor and the possibility to get all the temperature coefficients upon request. E7000 features the high-performance requested for space use in the frequency range from 5 to 32 GHz, and guarantees up to Qxf > 250 000 at 10GHZ.

Being one of the few manufacturers producing its own raw materials, Exxelia perfectly masters the production of dielectric resonators. Induced by the success of this new range, the company is now able to provide larger batches (up to 20kg of powder) of its E7000 series while keeping the exact same product properties, resulting in opportunities for cost-effective volume fabrication.

Typical applications for the E7000 series: Satellite multiplexing filter devices, radio links for communication systems (LMDS), military radars.

 

Published on 12 Feb 2018 by Marion van de Graaf

2023 Revolutionary Exxelia MML™ Ultra-High Energy Density Film Capacitors

Discover the power of MML™ technology The best performing film capacitors on the market with the highest energy density ever! Exxelia&#39;s revolutionary MML™ ultra-high energy density Film Capacitors are a game changer in the industry due to their unparalleled energy density of 400 J/dm3. This allows for a significant reduction in size and weight in comparison to traditional Polypropylene or Polyester dielectrics, as well as an increased operating temperature of up to 140°C and protection against transient voltage. Not only do MML™ capacitors offer a large flexibility in design, allowing for low profile configurations, but they have also been tested in actual cases for controls and DC-Links functions in aircraft applications and have shown a reduction in size and weight of about 50% compared to other film technologies.   Furthermore, when compared to MLCCs, MML™ capacitors have demonstrated a reduction in weight of between 70% to 90%, with no capacitance derating with voltage applied and a low drift of less than 5% across the temperature range. Applications that previously required clusters of stacked MLCCs can now be replaced by a single MML™ unit of similar size, with the added reliability that film dielectric offers. The exceptional properties of Exxelia&#39;s new MML™ capacitors make them suitable for a wide range of applications including power supplies, DC-links, AC/DC/AC power converters, charge/discharge or power generation functions of commercial/military aircraft, satellite platforms and payloads, launchers, defibrillators, downhole tools and any other applications that require confined electronics. Samples are available upon request.     Features & Benefits : Miniaturization of the function : Up to 50% size reduction vs other film technologies ; matching footprint with stacked MLCC Lightweight : 50% lighter vs other film technologies ; 80 to 90% lighter than ceramic No capacitance derating in voltage, stable in temperature (<5% drift through the temperature range) Capacitance from 1μF to 1000μF  Voltages from 50V to 1000V  Operating Temperature -55 °C to +140 °C Highly customizable   Get your white paper around our MML Film Capacitor Download our white paper now on our innovative Miniature Micro-Layer™ (MML™) technology, which offers the highest capacitance per volume for film capacitors available on the market, by filling out the form below.   Chargement&hellip;

Exxelia Ohmcraft’s Small, Low-Noise Resistors Maximize Design Options and Accuracy for Sensor Manufacturers

For more than 25 years, leading sensor manufacturers have turned to Exxelia Ohmcraft to provide small-form-factor, ultra-low-noise surface mount resistors to be used in a variety of critical sensor applications. In these applications, Exxelia Ohmcraft’s resistors enable designers to miniaturize the sensor’s footprint or accommodate multiple sensors in close proximity to each other—all while increasing accuracy of the end products. Resistors have a certain amount of electrical noise that is inherent in their construction, and the higher the noise, the more distorted the signal can become. Exxelia Ohmcraft’s high-resistance, low-noise chip resistors provide clearer signals to the sensor electronics, thereby improving their accuracy. To ensure requirements are met for specialty sensors such as those used to measure acceleration, velocity, or vibration, Exxelia Ohmcraft works closely with design engineers, who appreciate the combination of high performance, reliability, and small form factor that the company can provide. “Finding resistors that check all of these boxes can be a challenge for sensor designers. At Exxelia Ohmcraft, our understanding of these requirements allows us to provide the highest performing solution at the lowest possible cost,” said Eric Van Wormer, Vice President of Exxelia Ohmcraft. "In sensor electronics, it can be difficult to distinguish the signal one is trying to measure from the noise of the surrounding environment, but our low-noise resistors ensure that the signal quality is maximized.” Exxelia Ohmcraft’s technology utilizes the proprietary Micropen electronic printing system to “print” precise, narrow, serpentine lines with resistive ink on a ceramic substrate, producing higher performance resistors over a wider range of values on a smaller surface area than is possible with conventional film resistor technology.