Powerful ALUMUNIM ELECTROLYTIC CAPACITOR RANGES AT RAILTEX – BOOTH #H02

Exxelia is pleased to exhibit at RailTex 2017 in Birmingham, United-Kingdom. From May 9th to 11th at booth #H02, Exxelia will be showcasing innovative ranges of Aluminum Electrolytic capacitors for use in both rolling stock and signaling systems.


Felsic HV, long lifetime and high voltage screw terminal aluminum electrolytic capacitor

FELSIC105FELSIC 105 LP02The Felsic HV family of aluminum electrolytic screw terminal capacitors provides great performances in energy density and ultra-long lifetime. For instance, 6 800µF @450V fit into a  volume of Ø77 x 220mm  and can withstand 200,000h between 0 to 70° under 37Amps, which makes them the perfect choice for use in rolling stock traction systems or the CVS. The family also has one of the lowest ESR for aluminum capacitors with less than 10m0hms in most cases. Products are available for voltages from 160 to 450 Vdc, and offer capacitance values from 1500μF up to 47 000μF offering the best compromise between reliability and compacity.

Snapsic HV, high voltage snap aluminum electrolytic capacitor

Photo Sebastien Rande / Studio Cui CuiBecause it covers voltages from 16 to 500Vdc and temperatures up to +105°C, and because it is customizable, the Snapsic HV series is very versatile and can cover all needs of energy storage in medium voltage both in rolling stock equipment or signaling systems. Thanks to its high ripple current, it is often used in SMPS and HVAC rolling stocks units with a typical variation of 470µF @450V in Ø35 x 50mm, as well as in various signaling control units, where a smaller package can be used with for example 1 000µF @250V in Ø35 x 40mm.



 

Prorelsic, the long lifetime axial aluminum electrolytic capacitors for signaling equipment

Exxelia _ ProrelsicExxelia’s range of aluminum electrolytic solutions would not be complete without the axial leaded Prorelsic series. These capacitors show high ripple current and extra-long life-time with 20 000h @105°C. The most common sizes are Ø8.5 x 19mm, Ø10 x 19mm and Ø12 x 30mm, with typical values of 47µF @40V, 100µF @25V and 47µF @100V respectively. Prorelsic capacitors are perfectly suited for smoothing, coupling/decoupling and energy storage functions in railway signaling equipment.

Published on 14 Apr 2017 by Marion Van de Graaf

HIGH VOLTAGE CERAMIC CAPACITORS BASED ON BRAND NEW DIELECTRIC MATERIAL

No more compromises between stability and capacitance! The brand new C48X material combines most advantages of NPO and X7R dielectrics, enabling the new high power and high frequency ceramic capacitor range to provide great stability in voltage, high capacitance, great dissipation factor and fast charge/discharge. Miniaturization is a driving need for future electronics pieces of equipment. This evolution, true whatever the application, leads Exxelia Technologies (ex-Eurofarad) to develop a brand new high voltage ceramic capacitors range based on a new dielectric material named C48X, combining most of the advantages of NPO and X7R dielectrics. Compared to X7R material, C48X dielectric allows to get the same capacitance values under working voltage with the unrivaled advantage of a very low dissipation factor (less than 5.10-4). Besides, it can also withstand very high dV/dt, up to 10kV/μs, which makes it the solution of choice for pulse and fast charge/discharge applications. Thus capacitors with C48X dielectric appear to be ideally suited for power applications where heat dissipation may be detrimental to performances and reliability. Exxelia Technologies’ capacitors based on the C48X material have been developed from 200V to 5kV with chip sizes ranging from 1812 to 16080, allowing a maximum capacitance value of 10μF 200V (10 times more than with an NPO ceramic). The standard stacked versions are proposed with a maximum capacitance value of 47μF 200V. Regarding the mounting of these capacitors, many configurations are possible to be compatible either with surface mounting or through-hole mounting. All these versions can be suitable for space use and can be designed in order to avoid any whisker growth risk (10% min lead in all tin-lead alloys used). The introduction of the C48X range in the EPPL (European Space Agency Preferred Parts List) for space is in progress for sizes 0603 to 6560 from 100V to 1kV up to size 1210 and up to 5kV until the size 6560). Some typical applications: • 400Hz Aircraft • Defense • Space • Precision/filtering capacitance in thermally challenged environment for AC or DC voltage

Exxelia Ohmcraft Custom Resistors Help Ensure Reliability of Most-Deployed Anti-Tank Missile in the World

In times of warfare, the reliability of military weapons is absolutely critical to the success of a mission. For nearly a decade, military contractors have leveraged Exxelia Ohmcraft’s custom, high voltage resistors and dividers to ensure product performance in a variety of military applications, including the FGM-148 Javelin—the most-deployed anti-tank missile in the world. In a variety of military applications, including the FGM-148 Javelin—the most-deployed anti-tank missile in the world.“Missiles are exposed to extreme climate conditions and often sit idle—sometimes for several years—before they are launched. When that time comes, it is essential for those missiles to perform as expected,” said Eric Van Wormer, Vice President of Exxelia Ohmcraft. “Exxelia Ohmcraft custom resistors are designed to support the rigorous precision and reliability specifications required by military suppliers to withstand the harsh environmental conditions, ensuring that the missile remains fully operational under all circumstances. Exxelia Ohmcraft performs a full range of military lot acceptance testing (LAT) on resistors as necessary, and works closely with military contractors to meet the design requirements for each particular application. In the case of the FGM-148 Javelin, a small, lightweight form factor was imperative to keep the missiles as lightweight and portable as possible. Exxelia Ohmcraft’s technology utilizes the proprietary Micropen electronic printing system to “print” precise, narrow, serpentine lines with resistive ink on a ceramic substrate, producing higher performance resistors over a wider range of values on a smaller surface area than is possible with conventional film resistor technology.