Exxelia will integrate a cobot into its manufacturing process

In recent days, artificial intelligence has been at the center of the news, and will soon be deployed in Exxelia's production workshops, with the integration of technology related to cobots.


Cobot Exxelia

Exxelia has just equipped itself with a cobot (in partnership with the company Cognitive Engines) adapted to the production needs related to the manufacture of RF High Q capacitors.

The cobot is a collaborative robot designed to work hand-in-hand with operators. This technology coupled with artificial intelligence (I.A) offers a multitude of advantages including:

 

  1. Quality improvement: The cobots are equipped with high performance sensors and integrated quality control systems, which allow 100% thorough visual inspection, and guarantee a high level of quality, while adapting to the movements of the operators (no occupational safety risk).
  2. Flexibility: Cobots are lightweight and adaptable. This versatility allows them to occupy different positions depending on the needs of the moment.
  3. Safety: Cobots are designed to be used in pairs with Exxelia operators and can therefore protect them from dangerous or arduous tasks, which greatly improves the quality of life at work (reduction of repetitive gestures; positive impact on musculoskeletal disorders ).
  4. Optimization of operator time: Cobots take care of low value-added tasks and let the operator focus on high-value tasks, which values ​​the contribution of operators.

 

 

Cobot Exxelia

By collaborating with operators, cobots can improve production quality and accuracy, while ensuring their safety.

Industry 4.0 is changing the way businesses operate and the way products are designed, manufactured and delivered. Exxelia is convinced of the importance of Industry 4.0 and is positioning itself to be at the forefront of this transformation.

 

       Cobot intelligence artificielle

As a company specializing in the design and manufacture of critical electronic components for industrial applications, Exxelia pays particular attention to maintaining its extensive know-how. Exxelia uses state-of-the-art technologies to ensure the high level of quality that the applications the group serves cannot be without. The group pays particular attention to the coexistence of robotization with the mastery of manual processes held by operators to continue to offer customers the highest quality products, while remaining competitive.

Adopting this technology will allow Exxelia to maintain its leadership position in its industry, while improving quality, accuracy, operator safety and production efficiency.

 

 

Published on 21 Feb 2023 by Stephane PERES

What you should know about Wound Magnetics Technologies ?

EXXELIA designs and manufactures magnetic components including wound magnetics, inductors, transformers, motors, sensors and actuators for high voltage, high temperature and power applications. Products are optimized to meet the most demanding applications requirement thanks to a strong design expertise, EXXELIA masters High-Grade technologies: Chameleon Concept Magnetics (CCM), standard linear and toroidal, toroidal transfer molded technology (TT), SESI planar / Low-profile and aluminum foil winding.   > See our Wound Magnetics Technologies in catalog   DESIGN CAPABILITIES Exxelia designs magnetics for most applications: Switch-mode power supply including new and unusual architectures 360-800Hz Power supply (single and multipulse) 50 Hz power supply Current and Voltage measurement Lighting - Ignition Pulse transformer (gate drive, data) Micro inductor Audio-frequency Electromagnets etc.   Exxelia designs magnetics up to: 200kV dielectric strength 20kV operating voltage … 240°C operating temperature According to the main aerospace standards ESA ESCC 3201 MIL-STD-981 MIL-PRF-27 D0-160 etc   SWITCHED MODE POWE SUPPLY Cross regulation in multi output Flyback converters Exxelia has been working on this subject in order to understand the phenomenon, identify the cause(s) and find solutions to avoid the use of linear regulators consuming energy The identification of a relevant magnetostatic model of the transformer and its electronic environment are necessary for analysis of the phenomenon into circuit simulation software like PSIM or PSPICE. This allows to evaluate the influence of the model parameters and the other components of the converter on the variability of output voltages. The key point is then to link the product manufacturing technology to the parameters of the model, in order to reduce cross regulation thanks to the optimization of windings arrangement. The work on this topic allows a precise control of the output voltages on the most sensitive windings. Dual Active Bridge, small size & high efficiency The dual active bridge is a topology more and more used to supply batteries because it allows bidirectional energy transfer with the network. Exxelia is developing high reproducibility technology to integrate inductors in the transformer:   Example : 3 Transformers in each power supply Each transformer incorporates virtual inductance Lk 15 kW combined output @ 100 kHz switching Taps provide flexibility for 350 V / 700 V input & 28 V or 56 V output (up to 430 A) Exxelia value proposition: Small size, high efficiency, competitive cost despite multiple high current outputs and integrated inductors.   360-800Hz MULTI PULSE Exxelia developed a specific knowledge to optimize the design of single and multi-pulse magnetics for 360 – 800 Hz power network.   ACCURATE MEASUREMENT TRANSFORMERS (0.1%) FOR CRITICAL APPLICATIONS Real-time, detailed knowledge of the voltages and currents is becoming increasingly important to ensure the proper operation of electrical networks. This is as true for the aeronautics market as it is for the industrial market. Measurement transformers, whether current or voltage, are sensors. They must faithfully transmit a signal level in a highly variable environment (excitation, frequency, temperature) which influences their characteristics. Exxelia developed a designing method that takes into account all environmental conditions. The behavior of the sensor is modeled by a transfer function that depends on transformer characteristics and on the load resistance. Depending on the application and the targeted accuracy, Exxelia defines the best operating point of the sensor by calculating the worst case errors with respect to the variability of the model parameters. Exxelia designs sensors with an accuracy of up to 0.1%.   THERMAL MANAGEMENT, A PATH TO MINIATURIZATION For Exxelia, better thermal management translates into miniaturization of the component.  Indeed, thanks to an accurate calculation of the maximum operating temperature, Exxelia can design the smallest component able to transfer a given power. The calculation of this temperature requires the knowledge of the heating sources (core and copper losses) and the component thermal behavior. Exxelia uses a calculation method to do the best use of core losses data and improve them by developing partnership with core manufacturer  The copper losses due to Eddy current are taken into account by Exxelia through the identification of the overriding causes and the use of the most relevant analytical approaches to evaluate them. The calculation of the operating temperature from the losses requires to determine the thermal resistance, which varies according to the ambient temperature, the power dissipated and the exchange conditions with the environment. Exxelia performs measurement campaigns to determine the thermal resistances and their variation for its qualified technologies and for most of the standard ferrite shapes. In particular, the influence of natural convection is taken into account to address products for Space. When more detailed analysis is required, Exxelia has developed a unique thermal simulation software, based on finite element calculation and dedicated to magnetic components to make its use easier and faster.    HIGH VOLTAGE AND ELECTRIC FIELD CALCULATION   Exxelia developed specific design skills to anticipate voltage increase requested for aircraft and space embedded application. High voltage topic is mastered with both dedicated test equipment (up to 100kV) and electric field calculation knowhow.  Electric Field mitigation: In high voltage applications, local high electric field E [kV/mm] can lead to a premature aging of intulating parts ou insulators? (Partial discharge) and finally to an electric failure.  Simulation in the design phase, using finite element calculations with a 2D or 3D electrostatic software allows Exxelia to reduce high field areas and increase lifetime. Example: Electric Field, Iso-Voltage values   Custom High Voltage Transformer   ELECTROMECHANICAL DEVICES Exxelia engineers use advanced finite-elements simulation software to model and analyse electromagnetic behaviour. EXXELIA can provide a high added-value support for electromechanical devices optimization through electromagnetic and thermal calculations (weight reduction, torque increase, losses reduction, etc…): •   2D and 3D calculations:     Magnetostatic: B[T], J[A/mm²], L matrix (function of current)     Electrostatic: E[kV/mm], C matrix     Eddy current (AC) in magneto-harmonic     2D transient coupled multiphysics (electric + magnetic + circuit) •   Specific analysis:     Optimization under constraints     Parametric analysis     Sensitivity analysis CAD geometry and circuit import/export (step, Catia, Spice, … ) Some calculations: Torque [N.m], Force [N], Resistance [Ω], Losses[W], L matrix [H], C matrix [F]  Some applications: linear or angular electric motor, electromagnet, linear or angular actuator, proportional valves, position sensor, etc… Proportional Hydraulic Valve Topology analysis: Based on an extensive experience, Exxelia can offer the best topology dedicated to an application or look for the best performance within a given space:   Torque, field and geometrical optimization   > See our Wound Magnetics Technologies in catalog How Exxelia supports the key processes ? Cleaning procedure  The cleaning of the PCB boards is evolving from solvent (as isopropylic alcohol,...) to highly alkaline water based cleaning medium.  EXXELIA has performed an extensive study to offer robust technologies to withstand these current cleaning processes. The qualification procedure has included thermal shock, burn in and   Mechanical testings.  EXXELIA has defined gluing, marking, varnishing processes that allow the products to go through more than 5 cleaning cycles and operating up to 180°C.  Processes compliant to ESA and NASA outgassing standards have also been defined for products specified up to 140°C.    Wire integrity  EXXELIA has qualified specific processes to ensure wire integrity for better insulation. The wire undergoes mechanical, chemical and thermal stresses during the winding and cabling process steps. EXXELIA has set up a dedicated process to reduce the impact of these manufacturing steps and improve the overall reliability of the wires and products.    Finishing  EXXELIA offers several types of components: Surface Mounted Device, Through Hole or lead terminations products, system integrated components.    Packaging  Products are available on trays and, upon request, on reels for easy pick and place, ESD compliant  EXXELIA products offer components compliant to IPC/JEDEC standard J-STD- 020 with TP = 260°C and tP = 30 seconds.  Exxelia is a manufacturer of complex passive components and precision subsystems focusing on highly demanding end-markets, applications and functions. Exxelia product portfolio includes wide ranges of capacitors, inductors, transformers, resistors, filters, position sensors, slip rings and high-precision mechanical parts serving numerous leading industrial areas such as aerospace, defense, medical, rail, energiy and telecommunications. Thanks to extensive design capabilities and a robust development process, Exxelia is recognized for its ability to quickly evaluate application specific engineering challenges and provide cost-effective and efficient solutions. For requirements that cannot be met by our catalog products, we offer custom configurations: upgraded performance, custom geometries, robust packaging. EXXELIA Magnetics business unit has more than 40 years experience in the design, industrialization and manufacturing of magnetics for Space, Civil Aviation, Defense, Oil & Gas, Medical, Railway and Industrial niche markets. EXXELIA actively works in partnership with the customer from prototype phase to production series.  EXXELIA has several production sites including low cost factories. All Magnetics sites are EN/AS9100 qualified. EXXELIA can therefore offer the most competitive solution to the customer.  EXXELIA offers PCB mounted components, ruggedized medium power magnetics subassemblies as well as stators & rotor and actuators. EXXELIA has a large technology portfolio including High-Grade platforms for demanding market and a strong manufacturing heritage. The customer benefits from EXXELIA design expertise and know-how for their design to specifications and built-to-print requests. Both catalog and custom products are available. The qualification of technological innovation and the definition of the related design rules allow EXXELIA to offer cost effective optimized solutions.    Customer benefits  Time to market: Available qualified technologies for harsh environment Strong heritage in Space   Optimised solutions:  Co-design through partnership with technical teams High expertise in complex designs Knowledge of the applications Industrialisation know how    Cost effective solutions: Reduced Non recurrent Cost, Low Cost Country Sites   Obsolescence management.   > See our Wound Magnetics Technologies in catalog EW SPACE, Constellation, SPACE 4.0: EXXELIA is the right choice due to strong space heritage, qualified technologies and multiple choice of manufacturing locations: USA, Asia, North Africa, Europe.   Quality System & Validation Capabilities EXXELIA masters, fully implements and maintains all the main international and customer standards, specifications, regulations and requirements for the design, manufacture, inspection and testing of magnetic components and for EHS and quality management:   Space magnetics:     Europe:             ESA: ESCC 3201 family of specifications,         ESCC 20400, ESCC 20500, ESCC 23500     QPL series:         ESCC32/008, ESCC3201/009 & ESCC3201/010     QML     ESCC3201/011 & ESCC3201/012    Technology Flow:     CNES:    RNC-CNES-Q-ST-60102, RNC-CNES-Q-60103     USA - Japan:    MIL-STD-981, MIL-PRF-27 Aeronautics and Military magnetics:     USA:             MIL-STD-981, MIL-PRF-27, MIL-HDBK-1553,         MIL-PRF-15305, MIL-PRF-21038, MIL-PRF-39010,         MIL-PRF-83446. Environmental conditions and tests:      Europe:    EUROCAE ED-14, ,     USA:     RTCA DO-160, MIL-STD-202. Environment, health and safety:     EC 1907/2006 (REACH), 2002/95/EC (RoHS) EXXELIA is manufacturing RoHS products by default. Non RoHS should be specifically requested.  EXXELIA maintains a comprehensive and up to date data base of all chemicals to closely follow the REACH status.  Quality management: EN/AS9100 and 1509001 family of standards Major aerospace customers standards. > See our Wound Magnetics Technologies in catalog

July 14: When our components take flight aboard iconic aircraft

The Rafale, flagship of French aviation The Rafale, a French multipurpose combat aircraft, is a symbol of air power. Exxelia is proud to be the preferred supplier of electronic components for this exceptional aircraft. Thanks to our expertise in high-performance components, the Rafale is able to deploy its maximum power during critical missions. Whether in the air or on the ground, Exxelia components guarantee the reliability and exceptional performance of the Rafale. Exxelia is onboard with Film & Tantalum capacitors, Ceramic capacitors, High voltage capacitor block, Electrolytic aluminum capacitors, Magnetic components, Slip Rings & potentiometers, Miniature filters & Resistors.     The Alpha Jet, ambassador of French excellence The Alpha Jet, an advanced training aircraft used by several air forces around the world, is another example of aircraft that carry Exxelia components. With its maneuverability and versatility, the Alpha Jet is a preferred choice for pilot training and reconnaissance missions. Exxelia contributes to the reliability of this aircraft by supplying state-of-the-art electronic components for aeronautics, thus guaranteeing its proper functioning and safety. Our miniature capacitors with a high capacitance value from the CNC series range equip the Aphajet https://exxelia.com/en/product/detail/2/cnc-series     The F-16, international cooperation When we talk about the national holiday of July 14, it is also important to highlight the international partnerships that strengthen our aeronautical industry. The F-16, a multipurpose combat aircraft developed in collaboration with the United States, is a striking example of this cooperation. Exxelia supplies essential components for the F-16, thus contributing to the success of this strategic alliance.     The Tiger Helicopter: Air Force in Action The Tiger helicopter embodies the power and versatility of combat helicopters. Whether for reconnaissance, fire support or anti-tank missions, the Tiger is a reference in terms of operational performance. Exxelia contributes to the reliability of this aircraft by supplying state-of-the-art electronic components for defense.     The A400M, a giant of the air The A400M multipurpose military transporter is another aircraft that proudly incorporates Exxelia components. Designed for tactical, strategic and logistical transport missions, the A400M is a major asset for air forces. We equip the engine control & monitoring unit (EPMU), but also the MTU Aeroengines with our PET PM 90R2 47uF 20% 200V polyester film capacitors and the ICM Interconnection module - Transient filter design with C Series C48K high voltage ceramic capacitors (C480YCW 10nF 10% 500V - C280YCW 100nF 10% 500V).                 Custom design film : optimized characteristics and integration  SPT1221W 300nF 10% 630V (SMD)  SP2983W 100uF 5% 500V               SP3012W 4,7uF 10% 500V (THT)