Exxelia introduces the CCM family at ESA / SPCD 2022

Magnetic components for space applications, optimized for multi output Flyback transformers


SUMMARY


  • Introduction : evolution of magnetic components in space

Definition – How to satisfy it?

  • Part 1 : Family qualification by ESA/CNES

Why choose Technology Flow over QPL products?

Qualification steps.

  • Part 2 : Performance characterization of CCM technology

Thermal behavior.

Frequency response and Current saturation (standard CCM inductors).

  • Part 3 : Optimization for multi output Flyback transformers

The cross regulation problem or voltage deviations on some outputs.

PhD thesis definition – Different stages of work – Present and future results.

  • Conclusion

Components that meet present and future customer needs

 

WHAT IS A CCM?

 

CCM family : INTRODUCTION

 

What are the new technical needs and constraints for specific transformers?

 

First : Applications with more outputs.

Need for more In/Out pins.

More different voltages and power levels.

 

Second : Increase in the power to volume and power to weight ratios.

We can no longer take large safety margins.

  →  need to know all the technical limitations of the product.

Reliability, internal heating, frequency response, current saturation.

 

Third : Development time is getting shorter

Breadboards/Prototypes must work the first time  →  design method must be accurate.

Even specific products must avoid qualification time.

  →  have to be already qualified before BreadBoard/Prototype step.

 

Part 1 : ESA qualification 

 

 

  • CCM family : What is this, and what is it for?

1 technology for 5 shapes

Ferrite circuit around windings wound in a bobbin, cabled on a leadframe and moulded.

For both standard and custom components

Different types of functions : inductors (DMC, CMC), pulse/SMPS/measurement transformers

  →  QPL qualification not adapted  Technology Flow is better

 

  • What is a Technology Flow?

Exxelia must prove that CCM technology is space compliant.

1st step Evaluation (Exxelia), 2d step Qualification (ESA/CNES).

Exxelia has to define : bill of materials / manufacturing process / design rules and list of tests to be performed.

 

Bill of materials

3 key raw materials : Bobbin, leadframe and magnetic circuit.

Other materials : wires, solid insulation, glue/resin/varnish, weld, ink, package.

 

Manufacturing process

3 key steps : winding, cabling, moulding.

Other steps : gluing, assembling, marking, testing, packaging.

 

Design rules

All theoretic actions the designer has to do upstream to prevent surprises downstream.

 

Test campaigns

All those in Charts F4 SG1, SG2 and SG3.

Thermal shocks, Temperature rise, Overload, Soldering heat, Vibrations, Mechanical shocks Operating life, Permanence of marking, Solderability, Terminal strength, Dielectric, Moisture.

 

  • Summary of work carried out

- More than 100 components designed, manufactured, and tested

  many configurations of  functions / shapes / tests.

- Some components destroyed to identify security margins

  on thermal, mechanical, dielectric aspects.

- Evaluation took several years to complete

 Result :  Qualification was successful on first try.

 

  • Conclusion

Respecting BOM, process and design rules qualified  ... Exxelia has the right to offer any function in CCM shapes without any mandatory testing for customer.

 

Part 2 : CCM technology performances

 

 

  • Security margins must be reduced

Maximum permissible loss value  →  leads to internal heating (Tmax <  125 °C).

Maximum operating frequency  →  above resonant frequency component is no more inductive.

Saturation curve  →  which inductor value at which excitation current?

 

  • How can these characteristics be determined ?

We decided to carry out 3 experimental campaigns :

  1. Thermal resistance determination for each of 5 shapes.
  2. Inductance versus frequency curves for standard inductors.
  3. Inductance versus current curves for standard inductors.

 

  • Thermal resistance Rth of CCM4, CCM5, CCM6, CCM20 and CCM25

  • Definition of test conditions

Use of inductors with one winding connected to all pins one side.

 

Measurements in vacuum are very complex.

  →  in natural convection in the air first.

Copper losses (heating source) only.

  →  DC current excitation / measurement of Rwind.

Component on PCB / all pins soldered  / no glue / no copper except for large current paths.

Component in a (pierced) box inside a ventilated oven  / temperature controlled.

 

  • Measurement bench

Measurements realised for each of 5 shapes.

2 L values  /  5 Tenv : 25, 50, 75, 100, 125 and 150°C  / up to 15 meas. points for each Tenv.

 

  • Complements and further work

Results applied for all CCM components  /  We have a math model air convection → vacuum.

3D simulations in progress to validate these curves  …  1st results are promising.

Measurements in vacuum are planned.

 

  • Frequency behavior for CCM4, CCM5, CCM6, CCM20 and CCM25 standard inductors

 

  • Definition of test conditions

Use of inductors with one winding connected to all pins one side.

Constant excitation, between 100µT and 1mT.

Components soldered on a brass plate.

RLC meter calibrated after 1 hour functioning.

 

Measurement device

 

  • Measurements realised for each of 5 shapes

2 L values  / up to 15 meas. points for each inductor value.

 

 

  • Result overview
    • Majority of inductors are usable at least up to 1MHz.
    • All of inductors are usable at least up to 400kHz.

 

  • Saturation behavior for CCM4, CCM5, CCM6, CCM20 and CCM25 standard inductors

 

  • Definition of test conditions

Use of inductors with one winding connected to all pins one side.

0,5 phase shift full bridge DC supply.

DC+AC (300kHz) excitation with duty cycle > 0,5.

ΔI constant as long as no saturation.

Period nb controlled to achieve desired DC current.

L value measured with current rise slope.

 

  • Measurements realised for each of 5 shapes

2 L values  / 2 Tenv, ambiant and 125°C / up to 15 meas. points for each Tenv.

2 types of curves L function of Idc or Imax (Idc+ΔI/2).

 

  • Result overview

Big ≠ between 25 and 125 °C : taking account of thermal behavior of ferrite is mandatory.

Main interest : to detect the beginning of saturation.

 

Part 3 : multi Flyback optimization

 

 

  • What are voltage deviations also named cross regulation problem ?
  1. At nominal point of load, some output voltages are different from theoretical values.
  2. If power level at regulated output varies, some non-regulated output voltages values vary.
  3. Current waveform on some auxiliary outputs is very different from theoretical triangle shape.

 

  • Observation :

The more different output / voltage levels / power levels …

The greater the probability to have voltage deviations.

Actual solution : linear regulators.

  →  more volume/weight, less efficiency, more heating.

 

  • Charge :  Transformer is mostly responsible

Problem seriousness depends on application and even on piece inside a manufacturing batch.

Magnetic root cause (transformer), but power electronics consequence (converter).

  →  need to work in both electromagnetism and power electronics.

 

  • Exxelia decided to manage a PhD thesis on this subject

Aims :

  1. Understand scientific problem, Identify root causes (transformer, other components?),
  2. Find solutions, Take account of voltage deviations in design and manufacturing process

Partners : G2Elab laboratory, D. Motte Michellon student, CNES, Steel Electronique

 

  • PhD step 1 : Understanding the scientific problem, identify root causes

Study of magnetic behavior of several transformers

  →  use of FLUX finite element simulation software

Identification of a circuit model compliant with several softwares (Psim, Spice, other)

  →  extended Cantilever magnetostatic model

Calculation of all output voltages for different transformers/converters

  →  use of Psim circuit software

 

  • Result of analysis :
  •  3/4 problem comes from transformer : magnetic coupling between all secondaries
  •  1/4 problem comes from drawbacks of some other components of converter

 

  • Actions :
  1.   Creating an analytic model to take account of leakage inductances between secondaries,
  2.   Use this model to quick calculate all output voltages.

 

  • PhD step 2 :  Finding theoretical and industrial solutions

We identified relationship between   CCM winding process, couplings between secondaries and voltage deviations.

We identified which other components and which drawbacks are concerned.

For the moment, one method of winding CCM to avoid worst cases of voltage deviations and to minimize variations from one piece to another applied since 01/01/2022 for all designed Flyback in CCM.

In progress, a software to optimize (minimize) voltage deviations and to identify best cases of CCM winding processes.

    →  Increase of know-how for customer benefit.

 

CCM family : CONCLUSION

 

 

  • Whatever the function you need

Component is already qualified  →  Reliability and security.

Many pins  ==  many input/output possibilities.

You know its thermal behavior  →  have a good idea of its energy/power limit.

 

  • For inductor applications

You can have standard or custom components.

You know frequency and current responses.

 

  • For multi output Flyback transformers

Design method focused on :

  1. meeting customer’s need as close as possible,
  2. volume and weight reductions.

 

Understanding voltage deviations  =  problem minimization + ability to assist customer.

 

                                                                CCM technology is well adapted for space   …  and we continue to improve it.

 

 

 

Autor : Bruno COGITORE  –  Jean PIERRE

Magnetic Expert / Innovation  –  Space product Manager  •  Exxelia Magnetics

 

Published on 05 Oct 2021 by Stephane PERES

What you should know about Wound Magnetics Technologies ?

EXXELIA designs and manufactures magnetic components including wound magnetics, inductors, transformers, motors, sensors and actuators for high voltage, high temperature and power applications. Products are optimized to meet the most demanding applications requirement thanks to a strong design expertise, EXXELIA masters High-Grade technologies: Chameleon Concept Magnetics (CCM), standard linear and toroidal, toroidal transfer molded technology (TT), SESI planar / Low-profile and aluminum foil winding.   > See our Wound Magnetics Technologies in catalog   DESIGN CAPABILITIES Exxelia designs magnetics for most applications: Switch-mode power supply including new and unusual architectures 360-800Hz Power supply (single and multipulse) 50 Hz power supply Current and Voltage measurement Lighting - Ignition Pulse transformer (gate drive, data) Micro inductor Audio-frequency Electromagnets etc.   Exxelia designs magnetics up to: 200kV dielectric strength 20kV operating voltage … 240°C operating temperature According to the main aerospace standards ESA ESCC 3201 MIL-STD-981 MIL-PRF-27 D0-160 etc   SWITCHED MODE POWE SUPPLY Cross regulation in multi output Flyback converters Exxelia has been working on this subject in order to understand the phenomenon, identify the cause(s) and find solutions to avoid the use of linear regulators consuming energy The identification of a relevant magnetostatic model of the transformer and its electronic environment are necessary for analysis of the phenomenon into circuit simulation software like PSIM or PSPICE. This allows to evaluate the influence of the model parameters and the other components of the converter on the variability of output voltages. The key point is then to link the product manufacturing technology to the parameters of the model, in order to reduce cross regulation thanks to the optimization of windings arrangement. The work on this topic allows a precise control of the output voltages on the most sensitive windings. Dual Active Bridge, small size & high efficiency The dual active bridge is a topology more and more used to supply batteries because it allows bidirectional energy transfer with the network. Exxelia is developing high reproducibility technology to integrate inductors in the transformer:   Example : 3 Transformers in each power supply Each transformer incorporates virtual inductance Lk 15 kW combined output @ 100 kHz switching Taps provide flexibility for 350 V / 700 V input & 28 V or 56 V output (up to 430 A) Exxelia value proposition: Small size, high efficiency, competitive cost despite multiple high current outputs and integrated inductors.   360-800Hz MULTI PULSE Exxelia developed a specific knowledge to optimize the design of single and multi-pulse magnetics for 360 – 800 Hz power network.   ACCURATE MEASUREMENT TRANSFORMERS (0.1%) FOR CRITICAL APPLICATIONS Real-time, detailed knowledge of the voltages and currents is becoming increasingly important to ensure the proper operation of electrical networks. This is as true for the aeronautics market as it is for the industrial market. Measurement transformers, whether current or voltage, are sensors. They must faithfully transmit a signal level in a highly variable environment (excitation, frequency, temperature) which influences their characteristics. Exxelia developed a designing method that takes into account all environmental conditions. The behavior of the sensor is modeled by a transfer function that depends on transformer characteristics and on the load resistance. Depending on the application and the targeted accuracy, Exxelia defines the best operating point of the sensor by calculating the worst case errors with respect to the variability of the model parameters. Exxelia designs sensors with an accuracy of up to 0.1%.   THERMAL MANAGEMENT, A PATH TO MINIATURIZATION For Exxelia, better thermal management translates into miniaturization of the component.  Indeed, thanks to an accurate calculation of the maximum operating temperature, Exxelia can design the smallest component able to transfer a given power. The calculation of this temperature requires the knowledge of the heating sources (core and copper losses) and the component thermal behavior. Exxelia uses a calculation method to do the best use of core losses data and improve them by developing partnership with core manufacturer  The copper losses due to Eddy current are taken into account by Exxelia through the identification of the overriding causes and the use of the most relevant analytical approaches to evaluate them. The calculation of the operating temperature from the losses requires to determine the thermal resistance, which varies according to the ambient temperature, the power dissipated and the exchange conditions with the environment. Exxelia performs measurement campaigns to determine the thermal resistances and their variation for its qualified technologies and for most of the standard ferrite shapes. In particular, the influence of natural convection is taken into account to address products for Space. When more detailed analysis is required, Exxelia has developed a unique thermal simulation software, based on finite element calculation and dedicated to magnetic components to make its use easier and faster.    HIGH VOLTAGE AND ELECTRIC FIELD CALCULATION   Exxelia developed specific design skills to anticipate voltage increase requested for aircraft and space embedded application. High voltage topic is mastered with both dedicated test equipment (up to 100kV) and electric field calculation knowhow.  Electric Field mitigation: In high voltage applications, local high electric field E [kV/mm] can lead to a premature aging of intulating parts ou insulators? (Partial discharge) and finally to an electric failure.  Simulation in the design phase, using finite element calculations with a 2D or 3D electrostatic software allows Exxelia to reduce high field areas and increase lifetime. Example: Electric Field, Iso-Voltage values   Custom High Voltage Transformer   ELECTROMECHANICAL DEVICES Exxelia engineers use advanced finite-elements simulation software to model and analyse electromagnetic behaviour. EXXELIA can provide a high added-value support for electromechanical devices optimization through electromagnetic and thermal calculations (weight reduction, torque increase, losses reduction, etc…): •   2D and 3D calculations:     Magnetostatic: B[T], J[A/mm²], L matrix (function of current)     Electrostatic: E[kV/mm], C matrix     Eddy current (AC) in magneto-harmonic     2D transient coupled multiphysics (electric + magnetic + circuit) •   Specific analysis:     Optimization under constraints     Parametric analysis     Sensitivity analysis CAD geometry and circuit import/export (step, Catia, Spice, … ) Some calculations: Torque [N.m], Force [N], Resistance [Ω], Losses[W], L matrix [H], C matrix [F]  Some applications: linear or angular electric motor, electromagnet, linear or angular actuator, proportional valves, position sensor, etc… Proportional Hydraulic Valve Topology analysis: Based on an extensive experience, Exxelia can offer the best topology dedicated to an application or look for the best performance within a given space:   Torque, field and geometrical optimization   > See our Wound Magnetics Technologies in catalog How Exxelia supports the key processes ? Cleaning procedure  The cleaning of the PCB boards is evolving from solvent (as isopropylic alcohol,...) to highly alkaline water based cleaning medium.  EXXELIA has performed an extensive study to offer robust technologies to withstand these current cleaning processes. The qualification procedure has included thermal shock, burn in and   Mechanical testings.  EXXELIA has defined gluing, marking, varnishing processes that allow the products to go through more than 5 cleaning cycles and operating up to 180°C.  Processes compliant to ESA and NASA outgassing standards have also been defined for products specified up to 140°C.    Wire integrity  EXXELIA has qualified specific processes to ensure wire integrity for better insulation. The wire undergoes mechanical, chemical and thermal stresses during the winding and cabling process steps. EXXELIA has set up a dedicated process to reduce the impact of these manufacturing steps and improve the overall reliability of the wires and products.    Finishing  EXXELIA offers several types of components: Surface Mounted Device, Through Hole or lead terminations products, system integrated components.    Packaging  Products are available on trays and, upon request, on reels for easy pick and place, ESD compliant  EXXELIA products offer components compliant to IPC/JEDEC standard J-STD- 020 with TP = 260°C and tP = 30 seconds.  Exxelia is a manufacturer of complex passive components and precision subsystems focusing on highly demanding end-markets, applications and functions. Exxelia product portfolio includes wide ranges of capacitors, inductors, transformers, resistors, filters, position sensors, slip rings and high-precision mechanical parts serving numerous leading industrial areas such as aerospace, defense, medical, rail, energiy and telecommunications. Thanks to extensive design capabilities and a robust development process, Exxelia is recognized for its ability to quickly evaluate application specific engineering challenges and provide cost-effective and efficient solutions. For requirements that cannot be met by our catalog products, we offer custom configurations: upgraded performance, custom geometries, robust packaging. EXXELIA Magnetics business unit has more than 40 years experience in the design, industrialization and manufacturing of magnetics for Space, Civil Aviation, Defense, Oil & Gas, Medical, Railway and Industrial niche markets. EXXELIA actively works in partnership with the customer from prototype phase to production series.  EXXELIA has several production sites including low cost factories. All Magnetics sites are EN/AS9100 qualified. EXXELIA can therefore offer the most competitive solution to the customer.  EXXELIA offers PCB mounted components, ruggedized medium power magnetics subassemblies as well as stators & rotor and actuators. EXXELIA has a large technology portfolio including High-Grade platforms for demanding market and a strong manufacturing heritage. The customer benefits from EXXELIA design expertise and know-how for their design to specifications and built-to-print requests. Both catalog and custom products are available. The qualification of technological innovation and the definition of the related design rules allow EXXELIA to offer cost effective optimized solutions.    Customer benefits  Time to market: Available qualified technologies for harsh environment Strong heritage in Space   Optimised solutions:  Co-design through partnership with technical teams High expertise in complex designs Knowledge of the applications Industrialisation know how    Cost effective solutions: Reduced Non recurrent Cost, Low Cost Country Sites   Obsolescence management.   > See our Wound Magnetics Technologies in catalog EW SPACE, Constellation, SPACE 4.0: EXXELIA is the right choice due to strong space heritage, qualified technologies and multiple choice of manufacturing locations: USA, Asia, North Africa, Europe.   Quality System & Validation Capabilities EXXELIA masters, fully implements and maintains all the main international and customer standards, specifications, regulations and requirements for the design, manufacture, inspection and testing of magnetic components and for EHS and quality management:   Space magnetics:     Europe:             ESA: ESCC 3201 family of specifications,         ESCC 20400, ESCC 20500, ESCC 23500     QPL series:         ESCC32/008, ESCC3201/009 & ESCC3201/010     QML     ESCC3201/011 & ESCC3201/012    Technology Flow:     CNES:    RNC-CNES-Q-ST-60102, RNC-CNES-Q-60103     USA - Japan:    MIL-STD-981, MIL-PRF-27 Aeronautics and Military magnetics:     USA:             MIL-STD-981, MIL-PRF-27, MIL-HDBK-1553,         MIL-PRF-15305, MIL-PRF-21038, MIL-PRF-39010,         MIL-PRF-83446. Environmental conditions and tests:      Europe:    EUROCAE ED-14, ,     USA:     RTCA DO-160, MIL-STD-202. Environment, health and safety:     EC 1907/2006 (REACH), 2002/95/EC (RoHS) EXXELIA is manufacturing RoHS products by default. Non RoHS should be specifically requested.  EXXELIA maintains a comprehensive and up to date data base of all chemicals to closely follow the REACH status.  Quality management: EN/AS9100 and 1509001 family of standards Major aerospace customers standards. > See our Wound Magnetics Technologies in catalog