Exxelia SIC SAFCO celebrates its 100th anniversary !

Founded in 1921, SIC SAFCO, the historical brand of our electrolytic capacitors, is celebrating its 100th anniversary this year!


Founded in 1921, SIC SAFCO, the historical brand of our electrolytic capacitors, is celebrating its 100th anniversary this year!

We have come a long way since the creation of the Société Industrielle des Condensateurs (SIC)!

In 1930, Louis Ségal, the founder of SIC, set up his company in Colombes, in the Hauts de Seine region of France, and presented a patent for the manufacture of a three-phase capacitor with insulated wound sheets.  

In 1935, the French company for the manufacture of electrical capacitors (SAFCO) was born. SAFCO merged with SIC in 1954 to form the SIC SAFCO brand. 


This is the beginning of a great adventure for SIC SAFCO which will launch several ranges of capacitors such as : 


- The SNAPSIC range of aluminium electrolytic snap-in capacitors 
- The CUBISIC range of aluminium electrolytic radial capacitors 
- The FELSIC range of aluminium electrolytic capacitors with screw terminal

Some changes for SIC SAFCO which inaugurates its new site in Saint Nazaire in 2011 then change of name in 2015 for Exxelia SIC SAFCO.

In 2018, with the merger of Exxelia's French entities, Exxelia SIC SAFCO becomes Exxelia SAS.

Let's finish with the last news of the brand: the release in 2021 of the CUBISIC SLP range of radial electrolytic aluminium capacitors. 

Published on 11 Jun 2021 by Valentine Taffineau

Powerful ALUMUNIM ELECTROLYTIC CAPACITOR RANGES AT RAILTEX – BOOTH #H02

Felsic HV, long lifetime and high voltage screw terminal aluminum electrolytic capacitor The Felsic HV family of aluminum electrolytic screw terminal capacitors provides great performances in energy density and ultra-long lifetime. For instance, 6 800µF @450V fit into a  volume of Ø77 x 220mm  and can withstand 200,000h between 0 to 70° under 37Amps, which makes them the perfect choice for use in rolling stock traction systems or the CVS. The family also has one of the lowest ESR for aluminum capacitors with less than 10m0hms in most cases. Products are available for voltages from 160 to 450 Vdc, and offer capacitance values from 1500μF up to 47 000μF offering the best compromise between reliability and compacity. Snapsic HV, high voltage snap aluminum electrolytic capacitor Because it covers voltages from 16 to 500Vdc and temperatures up to +105°C, and because it is customizable, the Snapsic HV series is very versatile and can cover all needs of energy storage in medium voltage both in rolling stock equipment or signaling systems. Thanks to its high ripple current, it is often used in SMPS and HVAC rolling stocks units with a typical variation of 470µF @450V in Ø35 x 50mm, as well as in various signaling control units, where a smaller package can be used with for example 1 000µF @250V in Ø35 x 40mm.   Prorelsic, the long lifetime axial aluminum electrolytic capacitors for signaling equipment Exxelia’s range of aluminum electrolytic solutions would not be complete without the axial leaded Prorelsic series. These capacitors show high ripple current and extra-long life-time with 20 000h @105°C. The most common sizes are Ø8.5 x 19mm, Ø10 x 19mm and Ø12 x 30mm, with typical values of 47µF @40V, 100µF @25V and 47µF @100V respectively. Prorelsic capacitors are perfectly suited for smoothing, coupling/decoupling and energy storage functions in railway signaling equipment.

Exxelia onboard Solar Orbiter

Solar Orbiter, a European Space Agency mission, was launched on an Atlas V rocket 411 (AV-087) from Space Launch Complex 41 at Cape Canaveral Air Force Station at 11:03 p.m. EST on Sunday, Feb. 9 2020. The satellite reached its first working orbit around the Sun, called “halo orbit” and is ready to begin its first scientific observation campaign. The campaign will last six months, during which time the 55 payloads will be turned on one by one and tested before being used to perform scientific observations. Solar Orbiter is a highly complex scientific laboratory. Deploying such a mission is a one-of-a-kind achievement! The mission will take years and is one of the most highly anticipated scientific experiments of our time. And you know what they say: your best work comes when you're up against the toughest challenges. Unfortunately, these challenges aren't only in labs, but also in space. To study the Sun and its activity like never before, scientists are sending a probe into orbit around it. Solar Orbiter will be facing temperatures of up to 500°C, which is usually not survivable for complex equipment. But do you know what's even more challenging than getting data from a 500°C hot solar environment? Getting that data with expensive equipment that doesn't work, because you don't have enough reliable components at your disposal! That's why we, at Exxelia, were so happy when we heard that thousands of our capacitors and magnetics were chosen by the European Space Agency to achieve this mission; we're talking about components that will keep working in those kinds of harsh environments! They will help scientists better understand energy flow and particle acceleration within our own solar system and beyond. Shockingly, the Sun is mostly a mystery. We have some understanding of its composition, but it's unclear how the phenomena we see happen. Solar Orbiter is going to help us get a better idea of what makes the Sun tick by taking some of the most detailed images and observations of our star ever taken. Among the instruments on Solar Orbiter are: a Wide-Angle Imager and a Coronal Imager. Each will provide high-resolution images—an order of magnitude higher than those captured by NASA's Solar Dynamics Observatory—and spectacular views of the Sun's polar regions. The Wide-Angle Imager will capture images in five wavelengths, while the Coronal Imager will use seven wavelengths to observe phenomena that affect the upper layers of the solar atmosphere, such as magnetic fields and plasma flows. Our capacitors and magnetics are critical for stabilizing and powering these instruments on their mission to explore our home star! They need to be able to perform in a very hostile environment with temperatures ranging from -150°C (-238°F) to 500°C (932°F). Temperatures will reach their highest during the closest flybys of the Sun—which will take place as close as 15 million kilometers (about 93 million miles) from its surface. Our space capacitors and magnetics are capable of withstanding such high temperatures. They'll even keep functioning in cryogenic conditions, as low as -150°C (-238°F). These components are also very durable, which makes them perfectly suited for this mission.     Choosing the right capacitors for such a mission was not easy. The requirements and technical constraints were very strict. We had also to support and select the materials that could handle the launch vibrations and the shock of the rocket launching phase, we also had to achieve a very long life and high reliability in order to succeed in the mission. This project proves that our EXXELIA components are incredibly reliable and have nothing to envy to other electronic components on the market. Several other tests have been conducted by ESA in this project such as solar radiation, thermal shock... Exxelia ESA QLP Products Onboard Solar Orbiter : 14,400 CNC chips ceramic capacitors 14,400 CEC chips ceramic capacitors 520 of our CNC stacks ceramic capacitors 470 SESI QPL Inductors 380 MSCI RF Inductors  287 ESA qualified CTC21/E Tantalum Capacitors 50 ESA Film Capacitors PM94