WT83 - Condensateur tantale à électrolyte gélifié

Avec 470µf @ 100V en taille D, le WT83 est le condensateur parfait pour miniaturiser un design.

La gamme WT83 est une extension des familles ST79 (suivant les valeurs MIL CLR93) mais avec deux fois plus de capacitance. C'est la solution parfaite pour miniaturiser les conceptions existantes en jouant sur la taille et le poids. Par exemple, le WT83 offre 470µF à 100V en taille D, alors que le ST79 n'offre que 220μF dans les mêmes conditions. 

Published on 18 Sep 2017 by Marion van de Graaf

Exxelia Ohmcraft Custom Resistors Help Ensure Reliability of Most-Deployed Anti-Tank Missile in the World

In times of warfare, the reliability of military weapons is absolutely critical to the success of a mission. For nearly a decade, military contractors have leveraged Exxelia Ohmcraft’s custom, high voltage resistors and dividers to ensure product performance in a variety of military applications, including the FGM-148 Javelin—the most-deployed anti-tank missile in the world. In a variety of military applications, including the FGM-148 Javelin—the most-deployed anti-tank missile in the world.“Missiles are exposed to extreme climate conditions and often sit idle—sometimes for several years—before they are launched. When that time comes, it is essential for those missiles to perform as expected,” said Eric Van Wormer, Vice President of Exxelia Ohmcraft. “Exxelia Ohmcraft custom resistors are designed to support the rigorous precision and reliability specifications required by military suppliers to withstand the harsh environmental conditions, ensuring that the missile remains fully operational under all circumstances. Exxelia Ohmcraft performs a full range of military lot acceptance testing (LAT) on resistors as necessary, and works closely with military contractors to meet the design requirements for each particular application. In the case of the FGM-148 Javelin, a small, lightweight form factor was imperative to keep the missiles as lightweight and portable as possible. Exxelia Ohmcraft’s technology utilizes the proprietary Micropen electronic printing system to “print” precise, narrow, serpentine lines with resistive ink on a ceramic substrate, producing higher performance resistors over a wider range of values on a smaller surface area than is possible with conventional film resistor technology.

Magnetic Components based on Adaptive CCM Technology at APEC – Booth# 653 –

Exxelia will exhibit the CCM series during the Applied Power Electronics Conference at Exxelia’s booth #623 from March 27-30, 2017 in Tampa, FL. Exxelia designed CCM technology to respond to the growing interest of electronic engineers for inductors and transformers with multiple outputs, high power density and reduced footprint. Qualified for aeronautic and space applications, the CCM product line features terrific robustness. The monolithic design provides high mechanical performance, proven by the successfully testing in accordance with MIL-STD-202 (methods 213 and 204). The series offers five different sizes, allowing optimized component design in a pick-and-place surface mount (SMD) package. Through-hole (TH) packages are also available upon request. The CCM series is particularly flexible with a number of pins options available, from 2×6 pins for the smallest package, up to 2×10. CCM transformers and inductors can operate over a wide temperature range with a minimal temperature of -55° C. The standard thermal grade of the technology is 140° C. Thanks to the technology design, the thermal resistance is 30% lower than standard industrial components. The epoxy molding protecting the winding ensures a lower temperature gradient and a better heat dissipation. Each unit is thoroughly tested with a dielectric withstanding strength of 1,500 VAC.  Component materials meet UL 94-V0 rating. Exxelia can evaluate losses and related temperature rise thanks to an in-depth knowledge of CCM technology. Thermal resistance data is available for each package size. Exxelia can also manufacture products in CCM technology according to MIL-STD-981.

This website uses cookies for statistics purposes. By continuing to browse the site you are agreeing to our use of cookies.