To a prosperous 2024 !

We thank you for the trust you have placed in us and wish you a bright and joyful New Year.


Exxelia team extends warm wishes for a joyous and successful New Year 2024 ! 

 

May this year be filled with remarkable achievements and shared victories. Here's to embracing the spirit of teamwork and reaching new heights together! 

Published on 01 Jan 2024 by Stephane PERES

HIGH VOLTAGE CERAMIC CAPACITORS BASED ON BRAND NEW DIELECTRIC MATERIAL

No more compromises between stability and capacitance! The brand new C48X material combines most advantages of NPO and X7R dielectrics, enabling the new high power and high frequency ceramic capacitor range to provide great stability in voltage, high capacitance, great dissipation factor and fast charge/discharge. Miniaturization is a driving need for future electronics pieces of equipment. This evolution, true whatever the application, leads Exxelia Technologies (ex-Eurofarad) to develop a brand new high voltage ceramic capacitors range based on a new dielectric material named C48X, combining most of the advantages of NPO and X7R dielectrics. Compared to X7R material, C48X dielectric allows to get the same capacitance values under working voltage with the unrivaled advantage of a very low dissipation factor (less than 5.10-4). Besides, it can also withstand very high dV/dt, up to 10kV/μs, which makes it the solution of choice for pulse and fast charge/discharge applications. Thus capacitors with C48X dielectric appear to be ideally suited for power applications where heat dissipation may be detrimental to performances and reliability. Exxelia Technologies’ capacitors based on the C48X material have been developed from 200V to 5kV with chip sizes ranging from 1812 to 16080, allowing a maximum capacitance value of 10μF 200V (10 times more than with an NPO ceramic). The standard stacked versions are proposed with a maximum capacitance value of 47μF 200V. Regarding the mounting of these capacitors, many configurations are possible to be compatible either with surface mounting or through-hole mounting. All these versions can be suitable for space use and can be designed in order to avoid any whisker growth risk (10% min lead in all tin-lead alloys used). The introduction of the C48X range in the EPPL (European Space Agency Preferred Parts List) for space is in progress for sizes 0603 to 6560 from 100V to 1kV up to size 1210 and up to 5kV until the size 6560). Some typical applications: • 400Hz Aircraft • Defense • Space • Precision/filtering capacitance in thermally challenged environment for AC or DC voltage

Exxelia Ohmcraft Custom Resistors Enable Rapid COVID-19 Testing

Diagnostic medical device companies have been working tirelessly to develop testing solutions, particularly those that can provide rapid and reliable results. To make these test kits possible, manufacturers turned to Exxelia Ohmcraft—a leader in thick-film, high-voltage, high-precision resistor design and manufacturing The new all-inclusive rapid testing solutions involve processing patient samples using a thermocycler, an instrument that is used to amplify DNA and RNA to identify COVID-19. The thermocyclers utilize high-ohmic-value, low-noise surface mount resistors from Exxelia Ohmcraft to function. The resistors were required to meet tight specifications, including a small form factor to enable the testing devices to be portable. “Due to the current crisis, the customer was moving extremely quickly to get these test kits developed, produced, and into the hands of as many healthcare systems as possible. As a U.S. manufacturer with industry-leading lead times, Exxelia Ohmcraft was able to provide custom resistors essential to their mission,” said Eric Van Wormer, Vice President of Exxelia Ohmcraft. “We are proud to partner with companies committed to helping fight COVID-19.” Exxelia Ohmcraft’s technology utilizes the proprietary Micropen electronic printing system to “print” precise, narrow, serpentine lines with resistive ink on a ceramic substrate, producing higher performance resistors over a wider range of values on a smaller surface area than is possible with conventional film resistor technology.