CUBISIC HTLP : Exxelia étoffe sa gamme de condensateurs aluminium électrolytique de faible hauteur

Exxelia étoffe sa gamme de condensateurs Aluminium Électrolytiques de faible hauteur et défie les hautes températures à +125°C


 

7 juin 2022 – Paris, France - Exxelia, fabricant mondial de composants passifs complexes et de sous-systèmes dédiés aux environnements sévères, étoffe sa gamme de condensateurs CUBISIC, avec une version HTLP (High Temperature Low Profile). Ce CUBISIC HTLP offre, dans un packaging rectangulaire de faible épaisseur, la plus haute densité énergétique de condensateurs de sa catégorie, combiné à une tenue en température élevée (-55° → +125°C).

 

CUBISIC HTLP, la nouvelle gamme de condensateur rectangulaire qui change la donne

La nouvelle gamme de CUBISIC HTLP par Exxelia sort clairement du lot ! Pourquoi ? 

  • Elle offre jusqu’à 60% de plus de capacité que tous les autres condensateurs rectangulaires du marché, dans un même volume, tout en ayant une durée de vie de 5 000 heures.
  • Couvrant une plage de température de -55° → +125°C, le CUBISIC HTLP est conçu pour offrir d’excellentes performances en températures extrêmes, compatible des applications militaires et aéronautiques les plus sévères. 

 

Les ingénieurs se confrontant à des exigences de conception complexes et recherchant un produit facilement intégrable gagneront en encombrement et en fiabilité grâce à l’utilisation de matériaux améliorés et entièrement conformes à la norme REACH.

Le CUBISIC HTLP résiste à des vibrations de 20g et est qualifié à basse pression, le rendant résistant jusqu’à 92,000 pieds d’altitude. Il est parfaitement adapté pour une intégration dans les cockpits, les actionneurs et pour la génération d’énergie des avions commerciaux et militaires ainsi que dans les radars et systèmes laser.

 

CARACTÉRISTIQUES TECHNIQUES :

  • Capacité de 140μF à 58 000μF
  • Tension de 7,5V à 350V
  • Durée de vie de 5 000 heures à 125°C
  • Température de fonctionnement -55°C à +125°C
  • 20g en vibrations et 92,000 pieds d’altitude 
  • Versions RoHS disponibles

Published on 07 Jun 2022 by Stephane PERES

Exxelia at Eurosatory

State-of-the art absolute optical encoders Exxelia has acquired deep expertise in the development of contactless position sensors of several type: absolute and incremental optical encoders, magnetic technology and inductive sensors. Several ranges of state-of-the-art absolute optical encoders will be showcased at the company booth - Hall 5A booth# E543. Absolute optical encoders are position sensors that use optical signals to identify an absolute angular position. They provide the highest resolution, operating speed reliability as well as long life operation in most demanding environments. Exxelia ranges of absolute optical encoders offer very high performance levels for a very small footprint: high precision (<30arcsc.), high resolution (up to 21 bits), extreme thinness (10mm) and EMI EMC compatibility. With their compact design, Exxelia miniature encoders meet the requirements of the most demanding application such as aerospace, defense, medical, oil & mining industries. Various protocols are available to match with any application.  Exxelia encoders can be easily combined with other functions such as slip rings to provide customers turkey solutions.   Two new ranges of MIL-qualified wet tantalum capacitors: MIL39006/22 & MIL39006/25 The recently introduced ranges of MIL-qualified tantalum capacitors will be showcased on the company booth. MIL 39006/22 and MIL 39006/25 respectively equivalent to CLR79 and CLR81 types featuring hermetically sealed cylindrical tantalum cases and axial leads are available in T1, T2 T3 and T4 cases with extended capacitance and voltage ratings. MIL 39006/22 is qualified for voltages from 6V to 125V and provides from 1200µF @6V to 56µF @125V. MIL 39006/25 is qualified for voltages from 25V to 125V and delivers from 680µF @25V to 82µF @125V. Both ranges combine high energy density with a large operating temperature range of -55°C - +125°C and H vibrations and shocks resistance.  

Countering Threats from Transients in Magnetics

Understanding Electrical Transients in Magnetics Electrical transients are sudden, short-duration spikes in voltage or current. They can arise from various sources such as lightning strikes, switching operations, or inherent instabilities within the system. These transients can cause severe stress on magnetic components, leading to potential malfunctions or catastrophic failures.   Causes of Electrical Transients Electrical transients can originate from external factors like environmental conditions or input/output operations. Internally, they can be caused by the natural response of the system&#39;s reactive components: resistors, inductors, and capacitors. These components, governed by the laws of physics, react to changes in state variables, resulting in oscillations, amplification, or decay of signals.   Effects on Magnetic Components Magnetic components, such as transformers and inductors, are particularly susceptible to transients. For instance, transformers can exhibit parasitic components that affect their response to sudden voltage or current changes. These parasitic elements can cause amplification, oscillation, or even breakdown under transient conditions.   Mitigating Transient Threats Effective mitigation of transient threats involves understanding the behavior of magnetic components under dynamic conditions and implementing design strategies to counteract these effects.   Component Functions and Response Resistors: Dissipate energy to manage power levels. Inductors: Generate opposing voltages to slow current changes. Capacitors: Absorb or release charge to stabilize voltage changes. The induced voltage and current in inductors and capacitors are inversely proportional to the circuit&#39;s time constant. A smaller time constant means faster energy transfer, which can lead to higher transient voltages or currents.   Transformer Design Considerations Transformers must be designed to handle dynamic impedance transformations and provide necessary isolation. Realistic transformer models must account for parasitic components, which can significantly influence their behavior during transients. High voltage transformers, for instance, are prone to series resonance due to leakage inductance and self-capacitance, leading to oscillations and potential saturation.   Practical Mitigation Techniques High Bandwidth Instruments: Use to detect latent transient amplification and persistent ringing during normal operations. Worst Case Analysis: Evaluate bias currents and flux density for worst-case scenarios, including maximum voltage and temperature conditions. Current Transformer Verification: Ensure that protection circuits can detect transient overcurrents despite reduced output due to saturation. Residual Magnetization Control: Verify that residual magnetization does not impair operation, ensuring sufficient headroom for magnetization. Design of Experiments (DOEs), Risk Reduction Tests (RRTs), and Accelerated Stress Tests (ASTs): Implement these throughout the design stages to mitigate risks effectively. Protective Components: Use components like MOVs (Metal Oxide Varistors) to safeguard circuits from lightning-induced transients.   Countering threats from transients in magnetics requires a thorough understanding of the underlying causes and the implementation of robust design strategies. By employing high bandwidth detection instruments, performing worst-case analyses, and integrating protective measures, engineers can significantly reduce the risk of transient-induced failures in magnetic components. Adopting a proactive approach to design and testing ensures the resilience and reliability of electrical systems in the face of transient threats.