Exxelia at IMS

Exxelia is pleased to exhibit at IMS in Philadelphia, USA. From June 11 to 15 at booth# 2050, the company will be previewing several high-reliability microwave and RF components dedicated to a variety of industries including medical, transportation and defense.


Ultra low ESR, high RF power and high self-resonant frequency

The NHB series is a complete range of MLCC based on NPO dielectric material providing a very high Self Resonant Frequency and limiting the parasite Parallel Resonant Frequencies. The series is available in 1111 size with capacitance ranging from 0. 3pF to 100pF. NHB series offers excellent performance for RF power applications at high temperature up to 175°C and at 500 VDC. The lowest ESR is obtained by combining highly conductive metal electrodes and proprietary of new NPO low loss rugged dielectrics. NHB series particularly fits for high power and high frequency applications such as: cellular base station equipment, broadband wireless service, point to point / multipoint radios and broadcasting equipment. Typical circuit applications: impedance matching, bypass, feedback, tuning, coupling and DC blocking.

100% invar tuning screws with self-locking system  

Invar-36 is a unique Iron-Nickel alloy (64 % Fe / 36 % Ni) sought-after for its very low coefficient of thermal expansion. With 1.1 ppm. K–1 between 0°C and 100°C, Invar-36 is about 17 times more stable than Brass which is the most traditional and common alloy Tuning Elements are made of. The working temperature range in Space is so wide that this property becomes essential for a reliable and stable cavity filter tuning. Self-locking system is a technology commonly used on Tuning Element made of Brass or other soft “easy-to-machine” alloys but is innovative and pretty advanced when applied to hard and tough Invar 36. The design consists of two threaded segments separated by two parallel slots. After cutting both parallel slots, the rotor is compressed in its length in order to create a plastic deformation. Thus, an offset is induced between the two threaded segments which generates a constant tensile stress in the rotor from the moment threaded segments are screwed.

High Q Factor Dielectric Resonators in large batches

Dielectric resonators are designed to replace resonant cavities in microwave functions such as filters and oscillators. Exxelia with the support of ESA and CNES developed the E7000 series that provides a narrow bandwidth with smaller size. E7000 is Ba-Mg-Ta materials based that combines an ultra-high Q-factor and the possibility to get all the temperature coefficients upon request. E7000 features the high-performance requested for space use in the frequency range from 5 to 32 GHz, and guarantees up to Qxf > 250 000 at 10GHZ. Being one of the few manufacturers producing its own raw materials, Exxelia perfectly masters the production of dielectric resonators. Induced by the success of this new range, the company is now able to provide larger batches (up to 20kg of powder) of its E7000 series while keeping the exact same product properties, resulting in opportunities for cost-effective volume fabrication.

Published on 29 May 2018 by Marion van de Graaf

How to Select the Right Precision Resistor for Your Needs

{ "@context": "https://schema.org/", "@type": "HowTo", "name": "How to Select the Right Precision Resistor for Your Needs", "description": "Learn how to choose the right precision high voltage resistor for your project and find the expert advice you need. Find out how to select the correct precision resistor for best performance.", "image": "https://exxelia.com/uploads/News/how-to-select-the-right-precision-resistor-for-your-needs-65772fa33dd61.png", "totalTime": "PT8M", "estimatedCost": { "@type": "MonetaryAmount", "currency": "USD", "value": "0" }, "step": { "@type": "HowToStep", "text": "" } } I. Introduction to Precision Resistors A. Overview of the Importance of Precision Resistors in Electronic Circuits Precision resistors are integral components in modern electronic circuits, playing a pivotal role in determining the performance and accuracy of these systems. Their primary function is to manage and regulate the flow of electric current, ensuring that other components within the circuit receive the correct amount of power. This precision is particularly crucial in applications requiring high degrees of accuracy and stability, such as in medical equipment, aerospace technology, and sophisticated measuring instruments. The reliability and accuracy of precision resistors directly impact the overall efficiency, reliability, and safety of these electronic systems. B. Explanation of How Precision Resistors Differ from Standard Resistors While standard resistors are used in everyday electronic devices for basic current regulation, precision resistors are engineered to offer much higher accuracy and stability. The key distinctions lie in their tighter tolerance levels, lower temperature coefficients, and superior long-term stability. Tolerance in resistors indicates the degree of variance permissible from their specified resistance value, and precision resistors have significantly lower tolerance levels compared to standard resistors. Additionally, precision resistors exhibit minimal change in resistance with temperature variations, making them ideal for applications where environmental conditions fluctuate. C. Brief Introduction to High Voltage Resistors as a Subset of Precision Resistors High voltage resistors are a specialized category within precision resistors, designed to operate reliably under high voltage conditions. These resistors are crucial in circuits where they must withstand and regulate large voltage levels without compromising performance or safety. They are constructed using materials and designs that can handle high energy loads, and they often feature specific construction techniques to prevent breakdowns or failures due to the high voltage environment. D. Statement Understanding the critical factors in selecting the right precision resistor, especially for high voltage applications, is essential for optimal performance and safety. The selection process involves a comprehensive understanding of various technical parameters, including voltage and power ratings, tolerance, temperature coefficient, and physical packaging. This knowledge ensures that the chosen resistor not only meets the specific needs of the application but also adheres to the highest standards of reliability and safety. Table: Comprehensive Technical Criteria for Selecting High Voltage Precision Resistors Criteria Sub-Criteria Key Considerations Technical Details Application Implications Voltage Rating Maximum Operating Voltage Highest voltage the resistor can handle without breakdown Values typically range from a few kilovolts (kV) to tens of kV; must exceed the maximum circuit voltage Ensures safety and reliability under peak voltage conditions Power Rating Power Dissipation Capacity Amount of power the resistor can dissipate as heat without damage Rated in watts (W); dependent on resistor size, material, and design Prevents overheating and thermal degradation, especially critical in high-load applications Tolerance Accuracy Level Acceptable range of resistance variation from the nominal value Expressed as a percentage (%); tighter tolerance indicates higher precision (e.g., ±0.1%, ±0.5%) Higher precision in control and measurement circuits; critical for calibration and testing equipment Temperature Coefficient Temperature-Dependent Resistance Change Rate at which resistance changes with temperature Expressed as parts per million per degree Celsius (ppm/°C); lower values indicate better stability Minimizes performance variance in fluctuating thermal environments; essential for outdoor and industrial applications Thermal Stability Long-term Resistance Stability at Operating Temperatures Ability to maintain consistent resistance over time at specific temperatures Assessed through accelerated aging tests and thermal cycling Ensures long-term reliability and accuracy in high-temperature applications Physical Size & Form Factor Dimensions and Mounting Style Physical dimensions and installation method of the resistor Includes through-hole, surface-mount, and custom designs; size influences heat dissipation Determines compatibility with circuit board layout and influences thermal management Packaging Material and Construction External materials and construction methods used Options include conformal coating, encapsulation, and use of flame-retardant materials Affects durability, heat dissipation, and environmental resistance (moisture, chemical exposure) Environmental Resistance Resistance to External Conditions Ability to withstand environmental stressors Includes moisture resistance, vibration tolerance, and chemical resistance Ensures stable operation in harsh conditions like high humidity, industrial settings, or mobile equipment The following sections will delve into these aspects in detail, providing a thorough guide for professionals in selecting the most suitable high voltage precision resistors for their specific requirements.     II. Understanding Precision Resistors A. Definition and Characteristics 1. Explanation of What Precision Resistors Are Precision resistors are components in electronic circuits designed to offer high accuracy in their resistance values. Unlike standard resistors, which may have significant variance in resistance, precision resistors are manufactured to have minimal deviation from their specified resistance values. This accuracy is critical in applications where precise control of current and voltage is necessary to ensure the proper functioning of sensitive and high-precision electronic equipment. 2. Key Characteristics: Tolerance, Temperature Coefficient, Noise, and Stability - Tolerance: This refers to the allowable deviation of a resistor's resistance value from its nominal value, expressed as a percentage. For precision resistors, tolerance values are typically much tighter, often below 1%, ensuring greater accuracy. - Temperature Coefficient: This is a measure of how much a resistor's resistance changes with temperature. Precision resistors have low temperature coefficients, meaning their resistance remains stable across a range of temperatures, which is vital for consistent performance. - Noise: In the context of resistors, noise is the random variation in resistance, which can affect the signal quality in sensitive circuits. Precision resistors are designed to minimize noise, ensuring cleaner and more reliable signal transmission. - Stability: This characteristic refers to the ability of a resistor to maintain its resistance value over time, despite environmental factors and usage. Precision resistors have high stability, ensuring long-term reliability. B. Types of Precision Resistors 1. Overview of Various Types - Metal Film: These resistors are known for their high accuracy and low noise. They are made by depositing a thin metal film on a ceramic body. - Wirewound: These are made by winding a metal wire around an insulating core. They are known for high power ratings and stability. - Foil: Foil resistors offer the highest precision and stability. They are made by bonding a metal foil onto a ceramic substrate. 2. Pros and Cons of Each Type in Different Applications - Metal Film: Pros include good temperature coefficient and low noise, making them suitable for precision analog circuits. However, they may not be ideal for high-power applications. - Wirewound: These resistors excel in high-power applications and have good temperature performance. Their downside is their inductance, which may not be suitable for high-frequency applications. - Foil: While offering unparalleled precision and stability, foil resistors can be more expensive and may not be necessary for applications where extreme precision is not required. C. Importance in High Voltage Circuits 1. Role and Significance in High Voltage Applications In high voltage circuits, resistors must handle and regulate large voltages without degradation or failure. Precision resistors in these applications ensure that voltage is managed accurately, which is crucial for the safety and effectiveness of the overall system. Their precision and stability are key in maintaining the integrity of high voltage circuits found in power supplies, medical equipment, and industrial machinery. 2. Challenges Posed by High Voltage Environments High voltage environments pose unique challenges for resistors. They must be designed to withstand high electric fields without breakdown. This includes considerations for dielectric strength, insulation resistance, and physical construction to prevent arcing and physical damage. The materials used must be able to endure these stresses while maintaining their resistive properties over time, ensuring long-term reliability and safety.     III. Criteria for Selecting High Voltage Resistors A. Voltage Rating and Power Rating 1. Understanding Voltage Rating and Its Importance The voltage rating of a resistor indicates the maximum voltage it can handle before it risks breakdown or damage. This is particularly crucial in high voltage applications where resistors are exposed to high potential differences. Selecting a resistor with an appropriate voltage rating is essential to prevent premature failure and ensure safety. The voltage rating must be higher than the maximum voltage expected in the circuit to accommodate transient spikes without compromising the resistor's integrity. 2. How Power Rating Affects Resistor Performance in High Voltage Circuits Power rating is a measure of how much power a resistor can dissipate without exceeding its maximum operating temperature. In high voltage circuits, resistors often encounter high power levels. If a resistor's power rating is too low, it can overheat and fail. It's essential to choose a resistor with a power rating that matches or exceeds the power levels in the circuit. This ensures that the resistor can operate reliably over its intended lifespan without degrading due to thermal stress. B. Tolerance and Accuracy 1. Importance of Tolerance in Precision Resistors Tolerance, the permissible deviation from the nominal resistance value, is critical in precision resistors. In high voltage applications, even small inaccuracies can lead to significant errors or malfunctions. Precision resistors with tight tolerance are essential for applications where precise control of voltage and current is necessary, such as in calibration equipment or high-accuracy measuring devices. 2. Balancing Tolerance and Cost in High Voltage Applications While tighter tolerance is generally desirable, it often comes at a higher cost. Therefore, selecting a resistor involves balancing the need for precision with budget constraints. It's important to evaluate the level of tolerance required for the application’s performance and safety, and choose a resistor that provides the necessary precision without unnecessary expense. C. Temperature Coefficient and Thermal Stability 1. Role of Temperature Coefficient in Resistor Performance The temperature coefficient of a resistor indicates how its resistance changes with temperature. A low temperature coefficient is desirable in high voltage applications, as it ensures that the resistor maintains a stable resistance across a range of operating temperatures. This stability is vital in environments where temperature variations are common, as it affects the accuracy and reliability of the circuit. 2. Managing Thermal Stability in High Voltage Environments In addition to selecting resistors with low temperature coefficients, managing thermal stability involves considering the resistor’s environment. Factors such as ventilation, heat sinks, and placement within the circuit can influence the resistor’s temperature. Proper thermal management ensures that resistors operate within their specified temperature range, maintaining performance and prolonging lifespan. D. Physical Size and Packaging 1. Considering Physical Constraints and Mounting Styles The physical size and form factor of a resistor are important in applications with space constraints or specific mounting requirements. In high voltage circuits, larger resistors might be necessary to ensure adequate spacing for preventing arcing or breakdown. The choice of mounting style (such as through-hole or surface-mount) also impacts the resistor's thermal management and mechanical stability. 2. Impact of Packaging on Heat Dissipation and Durability The packaging of a resistor affects its ability to dissipate heat and withstand environmental stresses. In high voltage applications, resistors must be packaged in a way that promotes efficient heat dissipation to prevent overheating. The materials used in the packaging should also be durable and resistant to environmental factors such as humidity, chemicals, or mechanical stress. This ensures the long-term reliability and performance of the resistor in demanding high voltage environments.     IV. Application-Specific Considerations A. Industry-Specific Requirements 1. Tailoring Resistor Selection to Industry Standards Different industries have unique standards and requirements that significantly influence the selection of precision resistors, especially in high voltage applications. - Aerospace: This industry demands resistors that can withstand extreme conditions such as high altitudes, temperature fluctuations, and vibrations. Resistors must comply with stringent standards for reliability and durability. For example, they often require a very low temperature coefficient and exceptional stability to ensure accurate performance in critical aerospace systems. - Medical: In medical applications, precision resistors are used in sensitive and life-supporting equipment. They must meet high safety standards, ensuring accuracy and reliability. Resistors in these applications often need to be highly precise, with low noise and minimal variability to ensure patient safety and accurate readings. B. Environmental Factors 1. Dealing with Environmental Challenges Environmental conditions such as humidity and temperature extremes play a significant role in the performance of high voltage resistors. - Humidity: High levels of moisture can affect the insulation properties of resistors, potentially leading to short circuits or degradation of components. Selecting resistors with appropriate moisture resistance and protective coatings is crucial in humid environments. - Temperature Extremes: Resistors must be chosen based on their ability to operate reliably under extreme temperatures. This involves selecting materials and designs that can withstand thermal expansion and contraction, as well as maintain their resistive properties across the specified temperature range. C. Customization for Special Requirements 1. When to Consider Custom Solutions for Unique Applications There are scenarios where standard precision resistors might not meet the specific requirements of a high voltage application. In such cases, custom-designed resistors become necessary. - Unique Electrical Requirements: If an application has unusual voltage, current, or power demands that standard resistors cannot meet, custom resistors can be designed to handle these specific requirements. - Physical Space Limitations: In applications where space is constrained, standard resistors might not fit. Custom resistors can be designed with specific sizes and shapes to fit into limited spaces without compromising performance. - Special Environmental Conditions: For applications operating in extreme or unusual environments, such as deep-sea exploration or space missions, custom resistors can be developed with materials and coatings specifically engineered to withstand these conditions.     V. Best Practices in Selecting High Voltage Precision Resistors A. Comprehensive Needs Assessment 1. Identifying Key Parameters Based on Application Needs Before selecting high voltage precision resistors, a thorough assessment of the application’s needs is essential. This involves identifying key parameters that will influence the choice of resistor. Important factors to consider include: - Voltage and Power Requirements: Determine the maximum voltage and power the resistor needs to handle. This ensures the resistor can operate safely under the highest expected loads. - Tolerance and Accuracy Needs: Assess the level of precision required in the application. High-precision applications may necessitate resistors with very tight tolerances. - Environmental Conditions: Consider the operating environment, including temperature ranges, humidity levels, and potential exposure to chemicals or mechanical stress. - Physical Space Constraints: Evaluate the available space for the resistor in the circuit, which will influence the size and form factor of the resistor. - Regulatory and Industry Standards: Identify any industry-specific standards or regulations that the resistors must comply with. B. Vendor Selection and Quality Assurance 1. Choosing Reputable Vendors for High-Quality Components The quality of precision resistors is largely dependent on the manufacturer. Selecting reputable vendors is crucial for ensuring the reliability and performance of the components. Look for vendors with: - Proven Track Record: Choose manufacturers known for their quality and reliability in the industry. - Expertise in High Voltage Applications: Select vendors with specific experience and expertise in manufacturing high voltage precision resistors. - Good Customer Support: A vendor who offers strong technical support can be invaluable, especially for custom applications or when addressing specific technical challenges. 2. Importance of Quality Certifications and Testing Quality certifications and thorough testing are vital for ensuring that the resistors meet the required standards and specifications. - Quality Certifications: Look for resistors that come with relevant quality certifications, such as ISO standards. These certifications indicate that the resistors have been manufactured and tested according to rigorous quality control procedures. - Product Testing: Ensure that the resistors have undergone appropriate testing for parameters such as tolerance, temperature coefficient, and long-term stability. This can include in-house testing by the manufacturer and independent third-party testing. In conclusion, selecting the right high voltage precision resistors involves a detailed needs assessment and careful consideration of various technical parameters. Partnering with reputable vendors and ensuring quality certifications and testing are also critical steps in the selection process. Following these best practices will help in acquiring resistors that meet the specific needs of high voltage applications, ensuring safety, reliability, and optimal performance.

Innovative new products at Electronica - Booth# B5 312 -

Felsic HV, long lifetime and high voltage screw terminal The Felsic HV family of aluminum electrolytic screw terminal capacitors provides great performances in energy density and ultra-long lifetime. For example products can withstand 8 000 hours at 105°C under high values of current which makes them the perfect choice to overcome railway constraints. The family also has one of the lowest ESR for aluminum capacitors, less than 10m0hms in most cases. Products are available for voltages from 160 to 450 Vdc, and offer capacitance values from 1500μF up to 47 000μF. Thus the family is a good compromise between reliability and compacity, with for example 47 000μF @ 160V in a 90x200mm volume. Cost-effective common-mode chokes qualified for aerospace Designed and qualified for aerospace, the TCM series is available in a through-hole package for horizontal and vertical mounting. TCM common-mode chokes are offered with inductances from 0.7 to 47mH under rated currents from 0.3A to 4A, and thoroughly tested by a dielectric withstanding strength at 1500VAC. Their excellent thermal properties allow the TCMs to operate without a hitch from -55°C up to +125°C, which, combined to the high mechanical resistance of the chosen materials (all meeting to UL94 V0 rating) make those products the perfect fit for aviation, defense and transportation industries. Ceramic capacitors based on the new C48X dielectric New range of high voltage ceramic capacitors based on brand new dielectric material C48X, combining most advantages of NPO and X7R dielectrics. Compared to X7R material, C48X dielectric allows to get the same capacitance values under working voltage with the unrivaled advantage of a very low dissipation factor (less than 5.10-4). Besides, it can also withstand very high dV/dt, up to 10kV/μs, which makes it the solution of choice for pulse and fast charge/discharge applications or firing units. Thus capacitors with C48X dielectric appear to be ideally suited for power applications where heat dissipation may be detrimental to performances and reliability. Ultra low ESR, high RF power and high self-resonant frequency The new NHB series is a complete range of MLCC based on NPO dielectric material providing a very high Self Resonant Frequency and limiting the parasite Parallel Resonant Frequencies. The series is available in 1111 size with capacitance ranging from 0.3pF to 100pF. NHB series offers excellent performance for RF power applications at high temperature up to 175°C and at 500 VDC. The lowest ESR is obtained by combining highly conductive metal electrodes and proprietary of new NPO low loss rugged dielectrics. NHB series particularly fits for high power and high frequency applications such as: cellular base station equipment, broadband wireless service, point to point / multipoint radios and broadcasting equipment.