HIGH VOLTAGE CERAMIC CAPACITORS BASED ON BRAND NEW DIELECTRIC MATERIAL

Exxelia presents a new range of C48X high voltage ceramic capacitors. No more compromises between stability and capacitance! The brand new C48X material combines most advantages of NPO and X7R dielectrics, enabling the new high power and high frequency ceramic capacitor range to provide great stabil...


No more compromises between stability and capacitance! The brand new C48X material combines most advantages of NPO and X7R dielectrics, enabling the new high power and high frequency ceramic capacitor range to provide great stability in voltage, high capacitance, great dissipation factor and fast charge/discharge.

Miniaturization is a driving need for future electronics pieces of equipment. This evolution, true whatever the application, leads Exxelia Technologies (ex-Eurofarad) to develop a brand new high voltage ceramic capacitors range based on a new dielectric material named C48X, combining most of the advantages of NPO and X7R dielectrics.

Compared to X7R material, C48X dielectric allows to get the same capacitance values under working voltage with the unrivaled advantage of a very low dissipation factor (less than 5.10-4). Besides, it can also withstand very high dV/dt, up to 10kV/μs, which makes it the solution of choice for pulse and fast charge/discharge applications. Thus capacitors with C48X dielectric appear to be ideally suited for power applications where heat dissipation may be detrimental to performances and reliability.
Exxelia Technologies’ capacitors based on the C48X material have been developed from 200V to 5kV with chip sizes ranging from 1812 to 16080, allowing a maximum capacitance value of 10μF 200V (10 times more than with an NPO ceramic). The standard stacked versions are proposed with a maximum capacitance value of 47μF 200V.

Regarding the mounting of these capacitors, many configurations are possible to be compatible either with surface mounting or through-hole mounting. All these versions can be suitable for space use and can be designed in order to avoid any whisker growth risk (10% min lead in all tin-lead alloys used). The introduction of the C48X range in the EPPL (European Space Agency Preferred Parts List) for space is in progress for sizes 0603 to 6560 from 100V to 1kV up to size 1210 and up to 5kV until the size 6560).
Some typical applications:
• 400Hz Aircraft
• Defense
• Space
• Precision/filtering capacitance in thermally challenged environment for AC or DC voltage

Published on 05 Jun 2017 by Marion Van de Graaf

What is a capacitor ?

▲ WHAT IS A CAPACITOR ?   Definition from the dictionnary: « Capacitor »: Device able to accumulate charges and to relaunch them in a very short time.    > See our capacitors in catalog    What it really is: It's an electrical component made of 2 conductive armatures (called electrodes) separated by an isolating layer. Its main property is to store electrical charges on its armatures. There is a direct link between the voltage put on the capacitor and the value of the charge at the armatures This coefficient C, the capacitance, is the value caracterizing mathematically the capacitors. As we can identifie a direct link between U and I in the capacitor we can caracterize it as a dipole this way: 3 main dipoles : In the physical reality:   Contacts with the PCB (terminations) + Other internal contact suh as the metallic contacts, or the physical internal resistivity of the used materials. → Resistance in the circuit   Other losses due mainly to the leads → inductive effect in the circuit. Example of possible caracterization: That’s why the Esr is always written « at a certain frequency »  which should be the resonnance frequency. This is also why the capacitors have frequency optimal ranges. The higher the resonance frequency is, the higher the frequencies are withstanded by the capacitor.   In terms of energy Efficient energy is Ec.   In reality E= Ec+Er+Ei with: Ec = Energy due to the ideal capacitor Er = Energy to the ESR Ei = Energy due to the leakage.   So Er and Ei are caracterized by heating (Joule effect). So even if that’s not always a key paramter, the lower the esr the better it is for the circuit.                                                                                                                                                                               If the capacitor is polarized : If the capacitor is not polarized : > See our capacitors in catalog   ▲ MAIN CARACTERISTICS 1) Voltages (V) 2) Capacitance of Capacitor   3) Capacitance / volume 4) Tan Delta / ESR   5) Price of the function Whatever the function, the price of capacitors is important ! A cheap function does not mean a cheap product: 10 caps at 10€ is less expensive than 1 cap at 50€ …    > See our capacitors in catalog   ▲ FINAL OVERVIEW   Technology                                         Benefits of capacitors                          Constrains  Aluminum The least expensive The highest energy density Polarized Difficulties in storage High ESR and tan Delta Lowest temperature range  Ceramic   Ideal for high frequencies The biggest range of values (CAPA voltage)   Highest Price of the functions Low energy density Low values of capacitance  Film Highest ripple curents Highest voltages Lowest ESR and tan Delta Most expensive Lowest energy density High price of the function  Tantalum Lower ESR than aluminum, Good energy density and price of the function Polarized Solid can burn High ESR and tan Delta       > See our capacitors in catalog