Exxelia to showcase advanced Microwave Capacitors and Ferrites at IMS Microwave week 2024

Exxelia is proud to announce its participation at IMS Microwave Week 2024 in Washington, D.C. from June 16 to 21, 2024. At booth 2108, Exxelia will highlight its main RF/Microwave capacitor ranges: Super HiQ & High-Power High-Q CP/CL series and also its innovative range of microwave ferrites, includ...


Exxelia will be showcasing their Super High-Q series of RF ceramic capacitors. These capacitors feature ultra-low ESR and can operate at voltages up to 1500V. They are available in sizes ranging from 0402 to 1210, offering capacitance values from 0.1pF to 1 000pF. They are ideal for advanced RF applications such as power amplifiers, mixers, filters and matching networks. 

High Q MLCC CP SeriesExxelia also features advanced High-Power High-Q series, designed for lower frequency applications with power handling up to 7200V and capacitance value up to 10nF. These capacitors are available in NPO and P90 dielectrics, offering exceptional performance with low ESR and ESL, making them ideal for the most demanding application. Those CP (P90) and CL (NP0) series are ideal for defense communication (VHF/UHF), medical MR body coils, and RF generators for plasma, semiconductor manufacturing, and extreme ultraviolet (EuV) lithography. 

 

Exxelia will also exhibit its comprehensive range of materials & tuning components, with a special focus on its cutting-edge microwave ferrite products. These advanced components are engineered to meet the rigorous demands of modern microwave applications, providing unparalleled performance and reliability. 

 

High Epsilon Ferrite YK21-DK21As a highlight of our presence at IMS Microwave Week, Exxelia will be pre-launching a new High-epsilon microwave ferrite. This new High-Epsilon Ferrite is featuring a permittivity of 21 and is available in two versions (YK21 and DK21) to address all power applications. It represents a significant advancement in ferrite technology, engineered to enhance the performance of high-frequency radar systems, especially in Active Electronically Scanned Array (AESA) radar applications. This new component delivers exceptional magnetic properties and stability, crucial for the optimal performance of isolator and circulator devices.

 

High Epsilon Ferrite YK21-DK21

 

 

Key Features and Benefits about the new high-epsilon ferrite YK21 and DK21: 

  • High permittivity : 21
  • Two power levels available  : ∆Hk = 4.5 and ∆Hk = 8.5
  • Wide range of Ms : 1250 to 1900 Gauss
  • Frequency applications up to X band (12GHz).
  • Combination with Exxelia dielectric range for Ferrite Dielectric Assembly (FDA)
  • Short leadtime of 8-10 weeks for evaluation.

 

 

 

 

                              Ferrite Exxelia

Meet Us at IMS Microwave Week 2024

 

IMS logoWe invite you to visit us at IMS Microwave Week 2024, from June 16-21 in Washington, D.C., at booth 2108.

Our team of experts will be available to discuss the capabilities of the High-Epsilon Ferrite YK21-DK21 and how it can enhance your high-frequency applications.

 

Published on 03 Jun 2024 by Stéphane PERES

What is a capacitor ?

▲ WHAT IS A CAPACITOR ?   Definition from the dictionnary: « Capacitor »: Device able to accumulate charges and to relaunch them in a very short time.    > See our capacitors in catalog    What it really is: It's an electrical component made of 2 conductive armatures (called electrodes) separated by an isolating layer. Its main property is to store electrical charges on its armatures. There is a direct link between the voltage put on the capacitor and the value of the charge at the armatures This coefficient C, the capacitance, is the value caracterizing mathematically the capacitors. As we can identifie a direct link between U and I in the capacitor we can caracterize it as a dipole this way: 3 main dipoles : In the physical reality:   Contacts with the PCB (terminations) + Other internal contact suh as the metallic contacts, or the physical internal resistivity of the used materials. → Resistance in the circuit   Other losses due mainly to the leads → inductive effect in the circuit. Example of possible caracterization: That’s why the Esr is always written « at a certain frequency »  which should be the resonnance frequency. This is also why the capacitors have frequency optimal ranges. The higher the resonance frequency is, the higher the frequencies are withstanded by the capacitor.   In terms of energy Efficient energy is Ec.   In reality E= Ec+Er+Ei with: Ec = Energy due to the ideal capacitor Er = Energy to the ESR Ei = Energy due to the leakage.   So Er and Ei are caracterized by heating (Joule effect). So even if that’s not always a key paramter, the lower the esr the better it is for the circuit.                                                                                                                                                                               If the capacitor is polarized : If the capacitor is not polarized : > See our capacitors in catalog   ▲ MAIN CARACTERISTICS 1) Voltages (V) 2) Capacitance of Capacitor   3) Capacitance / volume 4) Tan Delta / ESR   5) Price of the function Whatever the function, the price of capacitors is important ! A cheap function does not mean a cheap product: 10 caps at 10€ is less expensive than 1 cap at 50€ …    > See our capacitors in catalog   ▲ FINAL OVERVIEW   Technology                                         Benefits of capacitors                          Constrains  Aluminum The least expensive The highest energy density Polarized Difficulties in storage High ESR and tan Delta Lowest temperature range  Ceramic   Ideal for high frequencies The biggest range of values (CAPA voltage)   Highest Price of the functions Low energy density Low values of capacitance  Film Highest ripple curents Highest voltages Lowest ESR and tan Delta Most expensive Lowest energy density High price of the function  Tantalum Lower ESR than aluminum, Good energy density and price of the function Polarized Solid can burn High ESR and tan Delta       > See our capacitors in catalog