Microwave Ferrites, Coaxial & Dielectric Resonators : Ask now !

To meet the increasingly demanding demand for coaxial resonators, dielectric resonators, and ferrites intended for the isolator and circulator subsystems used in radio communication systems, integrated circuits, amplifiers, and switches.


Exxelia offers a wide range, including:

Coaxial resonators :

Coaxial resonatorsResonators generally used in filters, duplexers, DRO's, and VCO's over a wide frequency range: 300 MHz to 6 GHz. They are available in several dimensions: 2x2, 4x4, 6x6, and up to 12x12 mm, offering the best compromise between impedance, Q factor, and resonance frequency.

 

 

Dielectric resonators :

Dielectric resonatorsThe dielectric resonators are designed to replace resonant cavities in microwave functions such as filters and oscillators. Exxelia, with the support of the ESA and CNES, has developed the E7000 series which offers narrow bandwidth with reduced size. The E7000 dielectric resonator is based on Ba-Mg-Ta materials which combine ultra-high quality factor and the possibility to obtain all temperature coefficients on request. E7000 presents the high performances required for space use in the frequency range of 5 to 32 GHz and ensures up to Qxf > 250,000 at 10 GHz. As one of the few manufacturers producing its own raw materials, Exxelia perfectly masters the production of dielectric resonators. Encouraged by the success of this new range, Exxelia is now able to supply larger batches (up to 20 kg of powder) while retaining the same product properties.

 

Ferrites :

Microwave ferritesFerrites are magnetic materials used in a variety of applications. They are particularly effective in suppressing electromagnetic interference and noise in high-frequency applications, making them indispensable for modern communication systems.

Ferrites are offered in disc, triangle, or specific designs. These materials are based on Exxelia formulations, offering low deltaH (ΔH) conducive to reducing IMD. Their combination with a dielectric material allows for a wide choice of composites (FDA) to miniaturize isolator/circulator designs.

Exxelia's ferrites are distinguished by their exceptional quality and superior performance. These ferrites are made from high-quality materials and benefit from state-of-the-art design and manufacturing processes. They have been tested for use in demanding environments and have demonstrated exceptional reliability in applications up to 40 GHz.

Contact us to help you choose the ferrites that best suit your needs.

Published on 30 Mar 2023 by Stephane PERES

CUBISIC HTLP : Exxelia expands its range of low profile aluminum electrolytic capacitors

June 7, 2022 - Paris, France - Exxelia, a global manufacturer of complex passive components and subsystems for harsh environments, is expanding its CUBISIC capacitor range with a HTLP (High Temperature Low Profile) version. This CUBISIC HTLP offers, in a thin rectangular packaging, the highest energy density of capacitors in its class, combined with a high temperature resistance (-55° → +125°C).    CUBISIC HTLP, the new rectangular capacitor range that changes the game  The new range of CUBISIC HTLP by Exxelia clearly stands out! Why?  It offers up to 60% more capacity than any other rectangular electrolytic capacitor on the market, in the same volume, while having a 5,000-hour life span. Covering a temperature range of -55° → +125°C, the CUBISIC HTLP is designed to provide excellent performance in extreme temperatures, compatible with the most severe military and aerospace applications.    Engineers facing complex design requirements and looking for an easily integrated product will gain space and reliability through the use of improved materials fully REACH compliant. The CUBISIC HTLP withstands 20g vibration and is low-pressure qualified, making it compatible to 92,000 feet in altitude. It is ideally suited for integration into cockpits, actuators, and power generation in commercial and military aircraft as well as radar and laser systems.  TECHNICAL SPECIFICATIONS : Capacity from 140μF to 58 000μF Voltage from 7.5V to 350V Service life of 5,000 hours at 125°C Operating temperature -55°C to +125°C 20g vibrations and 92,000 feet altitude  RoHS versions available    

Exxelia revolutionary MML™ ultra-high energy density Film Capacitors

MML™ is a revolutionary new technology that provides the highest capacitance per volume in film capacitors available on the market.    Why is it a game changer? Because an unparalleled energy density of 400 J/dm3 allows for a tremendous reduction in size and weight compared to traditional Polypropylene or Polyester dielectrics, together with an increased operating temperature up to 140 °C and transient voltage protection.   Besides, MML™ capacitors offer a large flexibility in design, easily allowing low profile configurations. Several studies have been conducted on actual cases of controls and DC-Links functions for aircraft applications. All have shown about 50% reduction in size and weight compared to other film technologies.  The comparative picture with MLCC is even more flattering, as it demonstrates between 70% to 90% reduction in weight, while showing no capacitance derating with voltage applied and a low drift < 5% through the temperature range. Applications using clusters of stacked MLCCs can now be replaced by a single MML™ unit of similar size, with all the increased reliability that film dielectric offers. With such outstanding properties, Exxelia new MML™ capacitors are perfectly suitable for power supplies, DC-links, AC/DC/AC power converters, charge/discharge or power generation functions of commercial/military aircraft, satellite platforms and payloads, launchers, defibrillators, downhole tools and any applications of confined electronics. Samples are readily available on request. Features & Benefits : Miniaturization of the function : Up to 50% size reduction vs other film technologies ; matching footprint with stacked MLCC Lightweight : 50% lighter vs other film technologies ; 80 to 90% lighter than ceramic No capacitance derating in voltage, stable in temperature (<5% drift through the temperature range) Capacitance from 1μF to 1000μF  Voltages from 50V to 1000V  Operating Temperature -55 °C to +140 °C Highly customizable