Exxelia est à bord des avions de chasse

[SUCCESS STORIES]


Découvrez tous nos composants à bord des avions de chasse, notamment nos condensateurs film et condensateurs tantale, ou bien nos Condensateurs film sur mesure, Transformateurs de puissance, Inductances et bobines, Résistances haute tension, Filtres EMI RFI, Condensateurs électrolytiques en aluminium, Condensateurs en céramique.

 

Visuel non contractuel

Published on 20 Apr 2022 by Stephane PERES

Countering Threats from Transients in Magnetics

Understanding Electrical Transients in Magnetics Electrical transients are sudden, short-duration spikes in voltage or current. They can arise from various sources such as lightning strikes, switching operations, or inherent instabilities within the system. These transients can cause severe stress on magnetic components, leading to potential malfunctions or catastrophic failures.   Causes of Electrical Transients Electrical transients can originate from external factors like environmental conditions or input/output operations. Internally, they can be caused by the natural response of the system's reactive components: resistors, inductors, and capacitors. These components, governed by the laws of physics, react to changes in state variables, resulting in oscillations, amplification, or decay of signals.   Effects on Magnetic Components Magnetic components, such as transformers and inductors, are particularly susceptible to transients. For instance, transformers can exhibit parasitic components that affect their response to sudden voltage or current changes. These parasitic elements can cause amplification, oscillation, or even breakdown under transient conditions.   Mitigating Transient Threats Effective mitigation of transient threats involves understanding the behavior of magnetic components under dynamic conditions and implementing design strategies to counteract these effects.   Component Functions and Response Resistors: Dissipate energy to manage power levels. Inductors: Generate opposing voltages to slow current changes. Capacitors: Absorb or release charge to stabilize voltage changes. The induced voltage and current in inductors and capacitors are inversely proportional to the circuit's time constant. A smaller time constant means faster energy transfer, which can lead to higher transient voltages or currents.   Transformer Design Considerations Transformers must be designed to handle dynamic impedance transformations and provide necessary isolation. Realistic transformer models must account for parasitic components, which can significantly influence their behavior during transients. High voltage transformers, for instance, are prone to series resonance due to leakage inductance and self-capacitance, leading to oscillations and potential saturation.   Practical Mitigation Techniques High Bandwidth Instruments: Use to detect latent transient amplification and persistent ringing during normal operations. Worst Case Analysis: Evaluate bias currents and flux density for worst-case scenarios, including maximum voltage and temperature conditions. Current Transformer Verification: Ensure that protection circuits can detect transient overcurrents despite reduced output due to saturation. Residual Magnetization Control: Verify that residual magnetization does not impair operation, ensuring sufficient headroom for magnetization. Design of Experiments (DOEs), Risk Reduction Tests (RRTs), and Accelerated Stress Tests (ASTs): Implement these throughout the design stages to mitigate risks effectively. Protective Components: Use components like MOVs (Metal Oxide Varistors) to safeguard circuits from lightning-induced transients.   Countering threats from transients in magnetics requires a thorough understanding of the underlying causes and the implementation of robust design strategies. By employing high bandwidth detection instruments, performing worst-case analyses, and integrating protective measures, engineers can significantly reduce the risk of transient-induced failures in magnetic components. Adopting a proactive approach to design and testing ensures the resilience and reliability of electrical systems in the face of transient threats.