Exxelia Ohmcraft Custom Resistors Help Ensure Speed and Accuracy of Automobile Electronics Testing

ROCHESTER, N.Y., July 28, 2020 — Before being sent off to dealerships for sale, automobiles are subject to a series of tests as part of the production process. To keep pace with industry trends and customer demands, today’s cars contain more electronic devices than ever, all of which must be tested ...


For this purpose, manufacturers of automotive testing systems have relied on Exxelia Ohmcraft—a leader in thick-film, high-voltage, high-precision resistor design and manufacturing—for more than 15 years.

This type of automotive testing ensures that all of the vehicle’s electronic components meet the most stringent testing standards, screening out any faulty devices or malfunctions. Tests are often run on multiple electronics simultaneously, increasing the complexity of these testing systems, which utilize precision low-noise chip resistors from Exxelia Ohmcraft for their accuracy and reliability.

“The automotive industry is rapidly changing and evolving, presenting manufacturers with not only new testing challenges, but the pressure to get their products into the market faster,” said Eric Van Wormer, Vice President of Exxelia Ohmcraft. “By leveraging Exxelia Ohmcraft’s custom surface mount resistors, automotive testing manufacturers are able to help their customers—automobile companies—meet the demands of the industry.”

Exxelia Ohmcraft’s technology utilizes the proprietary Micropen electronic printing system to “print” precise, narrow, serpentine lines with resistive ink on a ceramic substrate, producing higher performance resistors over a wider range of values on a smaller surface area than is possible with conventional film resistor technology.

Published on 29 Jul 2020 by Rebecca Charles

Magnetic Components based on Adaptive CCM Technology at APEC – Booth# 653 –

Exxelia will exhibit the CCM series during the Applied Power Electronics Conference at Exxelia’s booth #623 from March 27-30, 2017 in Tampa, FL. Exxelia designed CCM technology to respond to the growing interest of electronic engineers for inductors and transformers with multiple outputs, high power density and reduced footprint. Qualified for aeronautic and space applications, the CCM product line features terrific robustness. The monolithic design provides high mechanical performance, proven by the successfully testing in accordance with MIL-STD-202 (methods 213 and 204). The series offers five different sizes, allowing optimized component design in a pick-and-place surface mount (SMD) package. Through-hole (TH) packages are also available upon request. The CCM series is particularly flexible with a number of pins options available, from 2×6 pins for the smallest package, up to 2×10. CCM transformers and inductors can operate over a wide temperature range with a minimal temperature of -55° C. The standard thermal grade of the technology is 140° C. Thanks to the technology design, the thermal resistance is 30% lower than standard industrial components. The epoxy molding protecting the winding ensures a lower temperature gradient and a better heat dissipation. Each unit is thoroughly tested with a dielectric withstanding strength of 1,500 VAC.  Component materials meet UL 94-V0 rating. Exxelia can evaluate losses and related temperature rise thanks to an in-depth knowledge of CCM technology. Thermal resistance data is available for each package size. Exxelia can also manufacture products in CCM technology according to MIL-STD-981.

Countering Threats from Transients in Magnetics

Understanding Electrical Transients in Magnetics Electrical transients are sudden, short-duration spikes in voltage or current. They can arise from various sources such as lightning strikes, switching operations, or inherent instabilities within the system. These transients can cause severe stress on magnetic components, leading to potential malfunctions or catastrophic failures.   Causes of Electrical Transients Electrical transients can originate from external factors like environmental conditions or input/output operations. Internally, they can be caused by the natural response of the system's reactive components: resistors, inductors, and capacitors. These components, governed by the laws of physics, react to changes in state variables, resulting in oscillations, amplification, or decay of signals.   Effects on Magnetic Components Magnetic components, such as transformers and inductors, are particularly susceptible to transients. For instance, transformers can exhibit parasitic components that affect their response to sudden voltage or current changes. These parasitic elements can cause amplification, oscillation, or even breakdown under transient conditions.   Mitigating Transient Threats Effective mitigation of transient threats involves understanding the behavior of magnetic components under dynamic conditions and implementing design strategies to counteract these effects.   Component Functions and Response Resistors: Dissipate energy to manage power levels. Inductors: Generate opposing voltages to slow current changes. Capacitors: Absorb or release charge to stabilize voltage changes. The induced voltage and current in inductors and capacitors are inversely proportional to the circuit's time constant. A smaller time constant means faster energy transfer, which can lead to higher transient voltages or currents.   Transformer Design Considerations Transformers must be designed to handle dynamic impedance transformations and provide necessary isolation. Realistic transformer models must account for parasitic components, which can significantly influence their behavior during transients. High voltage transformers, for instance, are prone to series resonance due to leakage inductance and self-capacitance, leading to oscillations and potential saturation.   Practical Mitigation Techniques High Bandwidth Instruments: Use to detect latent transient amplification and persistent ringing during normal operations. Worst Case Analysis: Evaluate bias currents and flux density for worst-case scenarios, including maximum voltage and temperature conditions. Current Transformer Verification: Ensure that protection circuits can detect transient overcurrents despite reduced output due to saturation. Residual Magnetization Control: Verify that residual magnetization does not impair operation, ensuring sufficient headroom for magnetization. Design of Experiments (DOEs), Risk Reduction Tests (RRTs), and Accelerated Stress Tests (ASTs): Implement these throughout the design stages to mitigate risks effectively. Protective Components: Use components like MOVs (Metal Oxide Varistors) to safeguard circuits from lightning-induced transients.   Countering threats from transients in magnetics requires a thorough understanding of the underlying causes and the implementation of robust design strategies. By employing high bandwidth detection instruments, performing worst-case analyses, and integrating protective measures, engineers can significantly reduce the risk of transient-induced failures in magnetic components. Adopting a proactive approach to design and testing ensures the resilience and reliability of electrical systems in the face of transient threats.