Exxelia introduces the CCM family at ESA / SPCD 2022

Magnetic components for space applications, optimized for multi output Flyback transformers


SUMMARY


  • Introduction : evolution of magnetic components in space

Definition – How to satisfy it?

  • Part 1 : Family qualification by ESA/CNES

Why choose Technology Flow over QPL products?

Qualification steps.

  • Part 2 : Performance characterization of CCM technology

Thermal behavior.

Frequency response and Current saturation (standard CCM inductors).

  • Part 3 : Optimization for multi output Flyback transformers

The cross regulation problem or voltage deviations on some outputs.

PhD thesis definition – Different stages of work – Present and future results.

  • Conclusion

Components that meet present and future customer needs

 

WHAT IS A CCM?

 

CCM family : INTRODUCTION

 

What are the new technical needs and constraints for specific transformers?

 

First : Applications with more outputs.

Need for more In/Out pins.

More different voltages and power levels.

 

Second : Increase in the power to volume and power to weight ratios.

We can no longer take large safety margins.

  →  need to know all the technical limitations of the product.

Reliability, internal heating, frequency response, current saturation.

 

Third : Development time is getting shorter

Breadboards/Prototypes must work the first time  →  design method must be accurate.

Even specific products must avoid qualification time.

  →  have to be already qualified before BreadBoard/Prototype step.

 

Part 1 : ESA qualification 

 

 

  • CCM family : What is this, and what is it for?

1 technology for 5 shapes

Ferrite circuit around windings wound in a bobbin, cabled on a leadframe and moulded.

For both standard and custom components

Different types of functions : inductors (DMC, CMC), pulse/SMPS/measurement transformers

  →  QPL qualification not adapted  Technology Flow is better

 

  • What is a Technology Flow?

Exxelia must prove that CCM technology is space compliant.

1st step Evaluation (Exxelia), 2d step Qualification (ESA/CNES).

Exxelia has to define : bill of materials / manufacturing process / design rules and list of tests to be performed.

 

Bill of materials

3 key raw materials : Bobbin, leadframe and magnetic circuit.

Other materials : wires, solid insulation, glue/resin/varnish, weld, ink, package.

 

Manufacturing process

3 key steps : winding, cabling, moulding.

Other steps : gluing, assembling, marking, testing, packaging.

 

Design rules

All theoretic actions the designer has to do upstream to prevent surprises downstream.

 

Test campaigns

All those in Charts F4 SG1, SG2 and SG3.

Thermal shocks, Temperature rise, Overload, Soldering heat, Vibrations, Mechanical shocks Operating life, Permanence of marking, Solderability, Terminal strength, Dielectric, Moisture.

 

  • Summary of work carried out

- More than 100 components designed, manufactured, and tested

  many configurations of  functions / shapes / tests.

- Some components destroyed to identify security margins

  on thermal, mechanical, dielectric aspects.

- Evaluation took several years to complete

 Result :  Qualification was successful on first try.

 

  • Conclusion

Respecting BOM, process and design rules qualified  ... Exxelia has the right to offer any function in CCM shapes without any mandatory testing for customer.

 

Part 2 : CCM technology performances

 

 

  • Security margins must be reduced

Maximum permissible loss value  →  leads to internal heating (Tmax <  125 °C).

Maximum operating frequency  →  above resonant frequency component is no more inductive.

Saturation curve  →  which inductor value at which excitation current?

 

  • How can these characteristics be determined ?

We decided to carry out 3 experimental campaigns :

  1. Thermal resistance determination for each of 5 shapes.
  2. Inductance versus frequency curves for standard inductors.
  3. Inductance versus current curves for standard inductors.

 

  • Thermal resistance Rth of CCM4, CCM5, CCM6, CCM20 and CCM25

  • Definition of test conditions

Use of inductors with one winding connected to all pins one side.

 

Measurements in vacuum are very complex.

  →  in natural convection in the air first.

Copper losses (heating source) only.

  →  DC current excitation / measurement of Rwind.

Component on PCB / all pins soldered  / no glue / no copper except for large current paths.

Component in a (pierced) box inside a ventilated oven  / temperature controlled.

 

  • Measurement bench

Measurements realised for each of 5 shapes.

2 L values  /  5 Tenv : 25, 50, 75, 100, 125 and 150°C  / up to 15 meas. points for each Tenv.

 

  • Complements and further work

Results applied for all CCM components  /  We have a math model air convection → vacuum.

3D simulations in progress to validate these curves  …  1st results are promising.

Measurements in vacuum are planned.

 

  • Frequency behavior for CCM4, CCM5, CCM6, CCM20 and CCM25 standard inductors

 

  • Definition of test conditions

Use of inductors with one winding connected to all pins one side.

Constant excitation, between 100µT and 1mT.

Components soldered on a brass plate.

RLC meter calibrated after 1 hour functioning.

 

Measurement device

 

  • Measurements realised for each of 5 shapes

2 L values  / up to 15 meas. points for each inductor value.

 

 

  • Result overview
    • Majority of inductors are usable at least up to 1MHz.
    • All of inductors are usable at least up to 400kHz.

 

  • Saturation behavior for CCM4, CCM5, CCM6, CCM20 and CCM25 standard inductors

 

  • Definition of test conditions

Use of inductors with one winding connected to all pins one side.

0,5 phase shift full bridge DC supply.

DC+AC (300kHz) excitation with duty cycle > 0,5.

ΔI constant as long as no saturation.

Period nb controlled to achieve desired DC current.

L value measured with current rise slope.

 

  • Measurements realised for each of 5 shapes

2 L values  / 2 Tenv, ambiant and 125°C / up to 15 meas. points for each Tenv.

2 types of curves L function of Idc or Imax (Idc+ΔI/2).

 

  • Result overview

Big ≠ between 25 and 125 °C : taking account of thermal behavior of ferrite is mandatory.

Main interest : to detect the beginning of saturation.

 

Part 3 : multi Flyback optimization

 

 

  • What are voltage deviations also named cross regulation problem ?
  1. At nominal point of load, some output voltages are different from theoretical values.
  2. If power level at regulated output varies, some non-regulated output voltages values vary.
  3. Current waveform on some auxiliary outputs is very different from theoretical triangle shape.

 

  • Observation :

The more different output / voltage levels / power levels …

The greater the probability to have voltage deviations.

Actual solution : linear regulators.

  →  more volume/weight, less efficiency, more heating.

 

  • Charge :  Transformer is mostly responsible

Problem seriousness depends on application and even on piece inside a manufacturing batch.

Magnetic root cause (transformer), but power electronics consequence (converter).

  →  need to work in both electromagnetism and power electronics.

 

  • Exxelia decided to manage a PhD thesis on this subject

Aims :

  1. Understand scientific problem, Identify root causes (transformer, other components?),
  2. Find solutions, Take account of voltage deviations in design and manufacturing process

Partners : G2Elab laboratory, D. Motte Michellon student, CNES, Steel Electronique

 

  • PhD step 1 : Understanding the scientific problem, identify root causes

Study of magnetic behavior of several transformers

  →  use of FLUX finite element simulation software

Identification of a circuit model compliant with several softwares (Psim, Spice, other)

  →  extended Cantilever magnetostatic model

Calculation of all output voltages for different transformers/converters

  →  use of Psim circuit software

 

  • Result of analysis :
  •  3/4 problem comes from transformer : magnetic coupling between all secondaries
  •  1/4 problem comes from drawbacks of some other components of converter

 

  • Actions :
  1.   Creating an analytic model to take account of leakage inductances between secondaries,
  2.   Use this model to quick calculate all output voltages.

 

  • PhD step 2 :  Finding theoretical and industrial solutions

We identified relationship between   CCM winding process, couplings between secondaries and voltage deviations.

We identified which other components and which drawbacks are concerned.

For the moment, one method of winding CCM to avoid worst cases of voltage deviations and to minimize variations from one piece to another applied since 01/01/2022 for all designed Flyback in CCM.

In progress, a software to optimize (minimize) voltage deviations and to identify best cases of CCM winding processes.

    →  Increase of know-how for customer benefit.

 

CCM family : CONCLUSION

 

 

  • Whatever the function you need

Component is already qualified  →  Reliability and security.

Many pins  ==  many input/output possibilities.

You know its thermal behavior  →  have a good idea of its energy/power limit.

 

  • For inductor applications

You can have standard or custom components.

You know frequency and current responses.

 

  • For multi output Flyback transformers

Design method focused on :

  1. meeting customer’s need as close as possible,
  2. volume and weight reductions.

 

Understanding voltage deviations  =  problem minimization + ability to assist customer.

 

                                                                CCM technology is well adapted for space   …  and we continue to improve it.

 

 

 

Autor : Bruno COGITORE  –  Jean PIERRE

Magnetic Expert / Innovation  –  Space product Manager  •  Exxelia Magnetics

 

Publié le 05 Oct 2021 par Stephane PERES

Exxelia étend sa présence en Inde grâce à un investissement stratégique dans SVM

PARIS, France et CHENNAI, Inde, le 4 novembre 2024 – Exxelia, concepteur et fabricant de composants passifs et de sous-systèmes haute performance, annonce l&#39;acquisition de 70 % de SVM Private Limited, une entreprise indienne réputée, spécialisée dans la conception et la fabrication de composants magnétiques critiques et de busbars, destinés principalement aux marchés de la santé et de l&#39;industrie. Fondée en 1989 par Hemalatha et Ramprasad Meka, SVM possède 35 ans d&#39;expertise dans la conception, le développement et la fabrication de bobines, transformateurs et busbars laminés ou avec traitement de surface/revêtement. Au fil des années, la société est devenue un leader des solutions magnétiques critiques pour les applications d&#39;imagerie médicale, s&#39;appuyant sur une maitrise approfondie de toutes les normes applicables et des exigences qualités élevées. M. Meka, Directeur Général de SVM, conserve 30 % de l&#39;entreprise et continue d’exercer ses fonctions de direction actuelles. Mis à part un prochain changement de nom qui verra SVM renommée en Exxelia SVM, la société continuera à opérer depuis son site actuel de Chennai, et il n’est attendu aucun turnover particulier résultant de l&#39;acquisition. Grâce à ce partenariat, Exxelia renforce sa présence en Inde, ajoute les busbars à son offre produits et développe son savoir-faire et son expertise en magnétique tout en consolidant sa position dans le secteur médical, un domaine clé de développement. Paul Maisonnier, PDG d’Exxelia, déclare : « Nous sommes ravis d’accueillir SVM dans la famille Exxelia ! SVM est un leader bien établi sur son marché de niche, reconnu pour sa technologie de pointe et ses équipes talentueuses. En unissant nos forces avec SVM, nous renforçons considérablement notre portefeuille de produits magnétiques sur un large éventail de marchés. De plus, nous étendons notre présence en Inde avec un nouveau site de production magnétique, venant compléter notre usine de condensateurs existante. Cette démarche stratégique renforcera non seulement notre soutien aux clients français dans le respect de leurs obligations d’offset, mais aussi notre capacité à capitaliser sur le marché indien en pleine croissance. » Ramprasad MEKA, fondateur et directeur général de SVM, déclare : « SVM est ravi de faire partie d&#39;Exxelia, un groupe à taille humaine spécialisé dans les composants passifs et possédant une grande expertise dans les domaines des composants magnétique, de l&#39;électronique de puissance et du médical. Ce partenariat marque une étape importante dans le parcours de SVM, nous permettant de conserver nos compétentes équipes tout en bénéficiant du vaste réseau de vente mondial d&#39;Exxelia. Nous nous réjouissons de ce nouveau chapitre, qui accélérera notre croissance internationale et renforcera notre portée internationale. » KPMG Corporate Finance a agi en tant que conseiller financier exclusif des actionnaires de SVM Private Limited pour cette transaction. Sur le plan juridique, VNS Legal Partners a agi en tant que conseiller juridique des actionnaires de SVM, et Pioneer Legal a été le conseiller juridique d&#39;Exxelia.   ###   A propos de SVM SVM is a leading Indian designer and manufacturer of magnetics, busbars and electromechanical components, with a state-of-the art facility in Chennai, India. The company sells different magnetic products (inductors, transformers, bobbins for high and low frequency applications) as well as many different busbars: multi-layer laminated, flexible, resin cast or with specific coating (epoxy powder, PVC coated) and plating (nickel & gold, silver, tin). SVM serves the healthcare and industrial market and controls every step of product development internally, thanks to vast in-house tooling. SVM est un concepteur et fabricant indien réputé de produits magnétiques, de busbars et de composants électromécaniques. A la pointe de la technologie, son usine est située à Chennai, en Inde. L&#39;entreprise vend différents produits magnétiques (inductances, transformateurs, bobines pour les applications à haute et basse fréquence) ainsi qu&#39;un grand nombre de différentes busbars: laminées multicouches, flexibles, moulées en résine ou avec un revêtement spécifique (poudre époxy, revêtement PVC) et un traitement de surface (nickel et or, argent, étain). SVM dessert les marchés de la santé et de l&#39;industrie et maîtrise en interne chaque étape du développement des produits, grâce à ses nombreux outils de fabrication. Pour plus d’information, visiter svmpl.in