What you should know about Ceramic Capacitors ?

Discover the basic information about ceramic capacitors, to improve your choice


▲ What you should know about Ceramic Capacitors ?

 

1. Materials expert

For 50 years and as a market leader, EXXELIA’s comprehensive knowledge of the materials properties and performances have enabled us to design capacitors in Porcelain, NPO, BX, 2C1, BP, X7R and –2200ppm/°C ceramics.

See our capacitors in catalog

 

2. Custom Designs

Our catalog products don’t meet your application? 
Based on the valuable experience accumulated over the design of 2,000+ specific ceramic capacitors, you can trust EXXELIA to define a qualitative custom solution in a time effective manner.

 

3. No Obsolescence

Choosing a standard or custom EXXELIA product means you won’t have to worry about obsolescence.

 

4. Typical Applications

  • Aerospace & Defense: cockpit panels, flight control, radio systems, missile 
  • guidance systems…
  • Space: military and commercial satellites, launcher…
  • Medical: MRI, external defibrillators, implantable devices…
  • Telecommunications: base stations…
  • Oil and gas: drilling tools, MWD, LWD, wellheads…

 

5. ISO 9001 And AS9100C

Quality is at the core of Exxelia’s corporate culture. Each sites has its own certifications

 

6. Certifications

Capacitors manufactured by EXXELIA comply with American and European standards and meet the requirements of many international standards.
For Space qualified parts (ESA QPL), please refer to our catalog «Ceramic capacitors for Space applications».

 

7. Quality & Reliability


EXXELIA is committed to design and manufacture high quality and reliability products. The test cycles reproducing the most adverse operating conditions over extended periods (up to 10 000 hours) have logged to date well over 5.109 hours/°Component.
Failure rate data can be provided upon request.


8. Conflict minerals


EXXELIA is committed to an approach based on «Conflict Minerals Compliance». This US SEC rule demands complete traceability and a control mechanism for the mineral procurement chain, encouraging importers to buy only «certified» ore.
We have discontinued relations with suppliers that procure from the Democratic Republic of the Congo or an adjoining country.

 

9. Environment


EXXELIA is committed to applying a robust environmental policy, from product design through to shipment. To control its environmental footprint and reconcile this with the company’ functional imperatives, our environmental policy provides for the reduction or elimination of hazardous substances. We also focus on compliance with European Union directives and regulations, notably REACH and RoHS.


10. RoHS Compliancy

SMD CAPACITORS
The capacitor terminations are generally protected by a nickel barrier formed by electrolytic deposit. This barrier gives chip capacitors leaching performance far exceeding the requirements of all applicable standards. The nickel barrier guarantees a minimum resistance to soldering heat for a period of 1 minute at  260°C in a tin-lead (60/40) or tin-lead-silver (62/36/2) bath without noticeable alteration to the solderability. It also allows repeated soldering-unsoldering and the longer soldering times required by reflow techniques.
However nickel barrier amplifies thermal shock and is not recommended for chip sizes equal or greater than CNC Y (30 30) - (C 282 to C 288 - CNC 80 to CNC 94).


LEADED COMPONENTS
As well as for SMD products, leaded capacitors ranges can also be RoHS. These products, which are characterized by the suffix «W» added to the commercial type, are naturally compatible with the soldering alloys used in RoHS mounting technology. The connections coating is generally an alloy SnAg (with a maximum of 4% Ag). However, on a few products that EXXELIA will precise on request, the coating is pure silver.

 

11. MLCC Structure

 

12. Equivalent circuit

Capacitor is a complex component combining resistive, inductive and capacitive phenomena. A simplified schematic for the equivalent circuit is:

 

13. Dielectric characteristics 

Insulation Resistance (IR) is the resistance measured under DC voltage across the terminals of the capacitor and consists principally of the parallel resistance shown in the equivalent circuit. As capacitance values and hence the area of dielectric increases, the IR decreases and hence the product (C x IR) is often specified in Ω.F or MΩ.µF.


The Equivalent Series Resistance (ESR) is the sum of the resistive terms which generate heating when capacitor is used under AC voltage at a given frequency (f).


Dissipation factor (DF) is the ration of the apparent power input will turn to heat in the capacitor:

DF = 2π f C ESR


When a capacitor works under AC voltage, heat power loss (P), expressed in Watt, is equal to:


P = 2π f C Vrms2 DF

 

The series inductance (Ls) is due to the currents running through the electrodes. It can distort the operation of the capacitor at high frequency where the impedance (Z) is given as:


Z = Rs + j (Ls.q - 1⁄(C.q)) with q = 2πf


When frequency rises, the capacitive component of capacitors is gradually canceled up to the resonance frequency, where :


Z = Rs and LsC.q2 = 1


Above this frequency the capacitor behaves like an inductor.

 

Manufacturing steps

See our capacitors in catalog

SMD environmental tests

Ceramic chip capacitors for SMD are designed to meet test requirements of CECC 32100 and NF C 93133 standards as specified below in compliance with NF C 20700 and IEC 68 standards:

  • Solderability: NF C 20758, 260°C, bath 62/36/2.
  • Adherence: 5N force.
  • Vibration fatigue test: NF C 20706, 20 g, 10 Hz to 2,000 Hz, 12 cycles of 20 minutes each.
  • Rapid temperature change: NF C 20714, –55°C to + 125°C, 5 cycles.
  • Combined climatic test: IEC 68-2-38.
  • Damp heat: NF C 20703, 93 %, H.R., 40°C.
  • Endurance test: 1,000 hours, 1.5 URC, 125°C.

See our capacitors in catalog

 

STORAGE OF CHIP CAPACITORS


TINNED OR NON TINNED CHIP CAPACITORS
Storage must be in a dry environment at a temperature of 20°C with a relative humidity below 50 %, or preferably in a packaging enclosing a desiccant. 


STORAGE IN INDUSTRIAL ENVIRONMENT:

  • 2 years for tin dipped chip capacitors,
  • 18 months for tin electroplated chip capacitors,
  • 2 years for non tinned chip capacitors,
  • 3 years for gold plated chip capacitors.


STORAGE IN CONTROLLED NEUTRAL NITROGEN ENVIRONMENT:

  • 4 years for tin dipped or electroplated chip capacitors,
  • 4 years for non tinned chip capacitors,
  • 5 years for gold plated chip capacitors.


Storage duration should be considered from delivery date and not from batch manufacture date. The tests carried out at final acceptance stage (solderability, susceptibility to solder heat) enable to assess the compatibility to surface mounting of the chips.

 

LEAD STYLES

 

SOLDERING ADVICES FOR REFLOW SOLDERING
 

Large chips above size 2225 are not recommended to be mounted on epoxy board due to thermal expansion coefficient mismatch between ceramic capacitor and epoxy. Where larger sizes are required, it is recommended to use components with ribbon or other adapted leads so as to absorb thermo-mechanical strains.

RECOMMENDED FOOTPRINT FOR SMD CAPACITORS 
Ceramic is by nature a material which is sensitive both thermally and mechanically. Stresses caused by the physical and thermal properties of the capacitors, substrates and solders are attenuated by the leads.
Wave soldering is unsuitable for sizes larger than 2220 and for the higher ends of capacitance ranges due to possible thermal shock (capacitance values given upon request).

Infrared and vapor phase reflow, are preferred for high reliability applications as inherent thermo-mechanical strains are lower than those inherent to wave soldering. 

 

SOLDERING ADVICES FOR IRON SOLDERING


Attachment with a soldering iron is discouraged due to ceramic brittleness and the process control limitations. In the event that a soldering iron must be used, the following precautions should be observed:

  • Use a substrate with chip footprints big enough to allow putting side by side one end of the capacitor and the iron tip without any contact between this tip and the component,
  • place the capacitor on this footprint,
  • heat the substrate until the capacitor’s temperature reaches 150°C minimum (preheating step, maximum 1°C per second),
  • place the hot iron tip (a flat tip is preferred) on the footprint without,
  • touching the capacitor. Use a regulated iron with a 30 watts maximum,
  • power. The recommended temperature of the iron is 270 ±10°C. The temperature gap between the capacitor and the iron tip must not exceed 120°C,
  • leave the tip on the footprint for a few seconds in order to increase locally the footprint’s temperature,
  • use a cored wire solder and put it down on the iron tip. In a preferred way use Sn/Pb/Ag 62/36/2 alloy,
  • wait until the solder fillet is formed on the capacitor’s termination,
  • take away iron and wire solder,
  • wait a few minutes so that the substrate and capacitor come back down to the preheating temperature,
  • solder the second termination using the same procedure as the first,
  • let the soldered component cool down slowly to avoid any thermal shock.

 

14. Packaging

TAPE AND REEL

The films used on the reels correspond to standard IEC 60286-3. Films are delivered on reels in compliance with document IEC 286-3 dated 1991.
Minimum quantity is 250 chips.
Maximum quantities per reel are as follows:

  • Super 8 reel - Ø 180: 2,500 chips.
  • Super 8 reel - Ø 330: 10,000 chips.
  • Super 12 reel - Ø 180: 1,000 chips.


Reel marking complies with CECC 32100 standard:

  • Model.
  • Rated capacitance.
  • Capacitance tolerance.
  • Rated voltage.
  • Batch number.

 

15. Dimensional characteristics of chips tray packages

 

16. High Q Capacitors Tape and Reel Packaging Specifications

 

17. EIA standard capacitance values

Following EIA standard, the values and multiples that are indicated in the chart below can be ordered. E48, E96 series and intermediary values are available upon request.


 

18. EIA capacitance code

The capacitance is expressed in three digit codes and in units of pico Farads (pF).
The first and second digits are significant figures of the capacitance value and the third digit identifies the multiplier.
For capacitance value < 10pF, R designates a decimal point. 


See examples below:

 

19. Part marking voltage codes

Use the following voltage code chart for part markings:


20. Part marking Tolerance codes

Use the following tolerance code chart for part markings:

 

21. Reliability levels

Exxelia proposes different reliability levels for the ceramic capacitors for both NPO and X7R ceramics.

 

As the world’s leading manufacturer of specific passive components, we stand apart through our ability to quickly evaluate the application specific engineering challenges and provide a cost-effective and efficient solutions.
For requirements that cannot be met by catalog products, we offer leading edge solutions in custom configuration: custom geometries, packaging, characteristics, all is possible thanks to our extensive experience and robust development process, while maintaining the highest level of reliability.
Where necessary, special testing is done to verify requirements, such as low dielectric absorption, ultra-high insulation resistance, low dissipation factor, stability under temperature cycling or under specified environmental conditions, etc.

See our capacitors in catalog

Publié le 09 Jan 2022 par Stephane PERES

Condensateurs céramique multicouches 0402 certifiés ESA QPL

Les gammes de condensateurs céramique multicouches basse tension pour montage en surface, CEC19 et CNC19, ont obtenu le statut QPL respectivement selon les critères de l’ESCC 3009/042 et 3009/043. Les tailles de boîtier 0402 certifiées QPL sont disponibles de 10V à 25V, permettant un gain d’espace substantiel et un meilleur rendement. Les condensateurs céramiques d’Exxelia sont désormais certifiés QPL pour les tailles de boîtier de 0402 à 2220, de 10V à 100V. Les condensateurs CEC sont réalisés avec le diélectrique NPO (type 1) reconnu pour sa très grande stabilité en tension et en température. Les CNC sont réalisés avec le diélectrique X7R (type2) qui offre la possibilité d’atteindre de fortes valeurs de capacité. Les versions avec des terminaisons polymères sont également certifiées QPL. Ces condensateurs chips polyvalents sont développés pour être utilisés dans une multitude d’applications nécessitant une fiabilité à toute épreuve : satellites, lanceurs, charges utiles, etc. CEC19 en bref : - Diélectrique NPO qui présente une très grande stabilité - Capacité maximale : 330pF à 10V, 120pF à 16V et 100pF à 25V, - Grande plage de température : -55°C à 125°C CNC19 en bref : - Diélectrique X7R qui offre une grande capacité - Valeurs de capacité élevées : de 68pF à 12nF à 10V, 8.2nF à 16V et 5.6nF à 25V - Grande plage de température : -55°C to 125°C

I.A et Exxelia

Oui, vous lisez bien, chez Exxelia nous exploitons l’IA : l’intelligence artificielle.   L’histoire commence par une rencontre, sur le site de Marmoutier au sein de l’atelier Films en avril dernier. Automi, jeune start-up française, vient en visite pour explorer les possibilités d’application de contrôles visuels supportés par une IA. L’application est identifiée rapidement, le contrôle par Rayon X des pièces en vue de détecter les éclats de métal. L’équipe projet est constituée par Mireille et Florian qui, accompagnés de Galem et Leopold d’Automi, ont à charge de tester la technologie et de l’adapter au sein de l’atelier.    Plusieurs objectifs sont fixés : supprimer les aller-retours “d’identification des éclats” - “retouches” en vue de fabriquer les bonnes pièces du premier coup ; robustifier le temps de passage, fiabilisant ainsi l’OTD ; faciliter le travail des opérateurs et opératrices en leur donnant accès à des images mettant en lumière les défauts constatés.   Tout d’abord, il faut entraîner l’IA à détecter les défauts. La force d’Automi, peu d&#39;images sont nécessaires pour entraîner l’IA, c’est donc très rapidement que les équipes d’Exxelia et d’Automi se mettent en marche en suivant le processus d&#39;entraînement / validation / déploiement prévu.  Dès le mois de mai, les premiers essais sont conduits sur le terrain. Les images sont là et la détection s’opère. L’IA apprend au quotidien par les corrections effectuées par l’équipe projet en cas d’erreur.    Il reste maintenant plusieurs étapes à effectuer, pour rendre l’outil exploitable et disponible au plus près des postes de travail, notamment par la mise à disposition sur des tablettes des images et des détections. La technologie est mûre, le vrai défi pour l’équipe projet est maintenant d’inscrire cette technologie dans le quotidien, de manière accessible et simple d’utilisation. L’industrie 4.0 a pour vertu de supporter le quotidien des opérateurs et opératrices, ainsi que de l’ensemble des métiers où le numérique apporte un plus. Ce projet d’IA s’inscrit dans cette droite ligne, supportant à la fois les tâches de production et la qualité de nos produits.    Auteur : Alexandre MOEUF - Industry 4.0 Project Manager