Best wishes for 2019

Exxelia wishes you a Happy Holiday season and a bright new year 2019!


Published on 13 Dec 2018 by Rebecca Charles

Exxelia Ohmcraft’s Small, Low-Noise Resistors Maximize Design Options and Accuracy for Sensor Manufacturers

For more than 25 years, leading sensor manufacturers have turned to Exxelia Ohmcraft to provide small-form-factor, ultra-low-noise surface mount resistors to be used in a variety of critical sensor applications. In these applications, Exxelia Ohmcraft’s resistors enable designers to miniaturize the sensor’s footprint or accommodate multiple sensors in close proximity to each other—all while increasing accuracy of the end products. Resistors have a certain amount of electrical noise that is inherent in their construction, and the higher the noise, the more distorted the signal can become. Exxelia Ohmcraft’s high-resistance, low-noise chip resistors provide clearer signals to the sensor electronics, thereby improving their accuracy. To ensure requirements are met for specialty sensors such as those used to measure acceleration, velocity, or vibration, Exxelia Ohmcraft works closely with design engineers, who appreciate the combination of high performance, reliability, and small form factor that the company can provide. “Finding resistors that check all of these boxes can be a challenge for sensor designers. At Exxelia Ohmcraft, our understanding of these requirements allows us to provide the highest performing solution at the lowest possible cost,” said Eric Van Wormer, Vice President of Exxelia Ohmcraft. "In sensor electronics, it can be difficult to distinguish the signal one is trying to measure from the noise of the surrounding environment, but our low-noise resistors ensure that the signal quality is maximized.” Exxelia Ohmcraft’s technology utilizes the proprietary Micropen electronic printing system to “print” precise, narrow, serpentine lines with resistive ink on a ceramic substrate, producing higher performance resistors over a wider range of values on a smaller surface area than is possible with conventional film resistor technology.

Exxelia revolutionary MML™ ultra-high energy density Film Capacitors

MML™ is a revolutionary new technology that provides the highest capacitance per volume in film capacitors available on the market.    Why is it a game changer? Because an unparalleled energy density of 400 J/dm3 allows for a tremendous reduction in size and weight compared to traditional Polypropylene or Polyester dielectrics, together with an increased operating temperature up to 140 °C and transient voltage protection.   Besides, MML™ capacitors offer a large flexibility in design, easily allowing low profile configurations. Several studies have been conducted on actual cases of controls and DC-Links functions for aircraft applications. All have shown about 50% reduction in size and weight compared to other film technologies.  The comparative picture with MLCC is even more flattering, as it demonstrates between 70% to 90% reduction in weight, while showing no capacitance derating with voltage applied and a low drift < 5% through the temperature range. Applications using clusters of stacked MLCCs can now be replaced by a single MML™ unit of similar size, with all the increased reliability that film dielectric offers. With such outstanding properties, Exxelia new MML™ capacitors are perfectly suitable for power supplies, DC-links, AC/DC/AC power converters, charge/discharge or power generation functions of commercial/military aircraft, satellite platforms and payloads, launchers, defibrillators, downhole tools and any applications of confined electronics. Samples are readily available on request. Features & Benefits : Miniaturization of the function : Up to 50% size reduction vs other film technologies ; matching footprint with stacked MLCC Lightweight : 50% lighter vs other film technologies ; 80 to 90% lighter than ceramic No capacitance derating in voltage, stable in temperature (<5% drift through the temperature range) Capacitance from 1μF to 1000μF  Voltages from 50V to 1000V  Operating Temperature -55 °C to +140 °C Highly customizable