EMI & TEMPEST FILTERS

The BCM filters range is used for radio frequency interference protection of power lines.

The general design of these filters corresponds with the attenuation requests of shielded sites (Faraday cages, shelters, anechoic or reverberation chambers...) for EMC testing or secure locations with TEMPEST requirements.

These filters can be used for the following single or three phase electrical networks: $400\,V_{DC}, 250/440\,V_{AC} - 50/60/400\,Hz$ (for an 800 Hz version please consult us).

The electrical structure used allows low leakage current

On request:

all references can be supplied with varistor between each input and earth.

Standard voltage varistor rating: $420 \text{ Vrms} - (40 \text{ kA} - 8/20 \,\mu\text{s}).$

Other voltage varistor ratings can also be supplied.

GENERAL CHARACTERISTICS

The BCM filter range is made from a non-magnetic stainless steel which provides an excellent earth bonding and electromagnetic shielding.

The cabinet is separated into three parts:

- Network access
 Filtering area
 - Filtering area.
- Shielded area which has a metal penetration nozzle supplied with the filter.

The lid of the shielded area is equipped with a double barrier gasket.

TECHNICAL CHARACTERISTICS

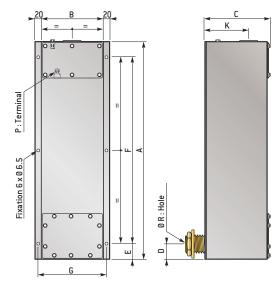
Operating temperature: $-40^{\circ}\text{C} + 50^{\circ}\text{C}$ Storage temperature: $-40^{\circ}\text{C} + 70^{\circ}\text{C}$ Test voltage: 1150 V_{DC} live neutral 2250 V_{DC} live ground Overvoltage protection: consult us

MOUNTING

These filters are designed for mounting on the penetration panel or directly on the non-painted wall of the Faraday cage.

Mounting procedure:

- Fixed with six screws.
- Feed-through nozzle (supplied with filter) is used to ensure high frequency performance.
 A non-rotation system ensures correct and easy mounting.


MAXIMUM TORQUE VALUE

M 5: 2,2 Nm **M 33 x 2**: 40 Nm **M 6**: 2,45 Nm **M 60 x 2**: 40 Nm

M8: 10 Nm

BCM Series

Dimensions (mm)

FILTRES EMI & TEMPEST

Les filtres BCM sont destinés à la protection radioélectrique des lignes d'alimentation d'énergie.

Leur conception générale correspond aux exigences requises pour les sites blindés (cages de Faraday, abris techniques mobiles, chambres anéchoïdes ou réverbérantes...), pour des applications de mesure CEM ou locaux sécurisés répondant à des exigences TEMPEST.

lls sont utilisables pour les réseaux électriques monophasés et triphasés suivants : 400 V_{CC}, 250/440 Veff. - 50/60/400 Hz

(utilisation possible sur réseau 800 Hz - nous consulter)

La structure électrique employée permet d'avoir un courant de fuite réduit.

Sur demande :

Toutes les références peuvent être livrées avec une varistance entre chaque entrée et la masse. Tension varistance standard :

420 Veff. - (40 kA - 8/20 μs).

D'autres valeurs de tension varistance peuvent être fournies.

CARACTÉRISTIQUES GÉNÉRALES

Les filtres série BCM réalisés à partir d'un boîtier en inox amagnétique assurant l'équipotentialité des masses et le blindage électromagnétique. Le coffret est séparé en trois volumes distincts :

- Espace d'accès réseau.
- Espace de filtrage.
- Espace blindé utilisable avec la buse de pénétration fournie.

Le couvercle du box blindé est équipé d'un joint à double barrière.

CARACTÉRISTIQUES TECHNIQUES

Température d'utilisation : $-40^{\circ}\text{C} + 50^{\circ}\text{C}$ Température de stockage : $-40^{\circ}\text{C} + 70^{\circ}\text{C}$ Tension d'essai : $1150 \, V_{CC}$ phase neutre

2250 V_{CC} phase masse

Protection surtension : nous consulter

MONTAGE

Ces filtres sont prévus pour être fixés sur la plaque collectrice ou directement sur la cloison non peinte du local faradisé.

Cette fixation est assurée par :

- Montage par 6 vis.
- Une buse passe paroi fournie en standard pour assurer l'étanchéité haute fréquence.
 Un dispositif anti-rotation est prévu pour un montage correct et facile.

COUPLE DE SERRAGE MAX.

M5: 2,2 Nm **M33 x2**: 40 Nm **M6**: 2,45 Nm **M60 x2**: 40 Nm

M8: 10 Nm

CONNECTION

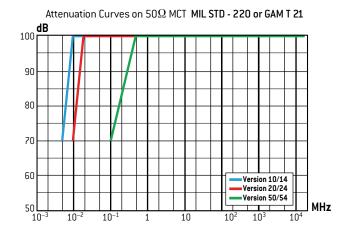
For the shielded area:

Cables are passed through metallic nozzles ensuring that the RFI sealing between the inside of the cages and the shielded area. Connections are made by copper threaded terminals with a dedicated neutral. A connection for ground is available and can be used as an earth terminal.

For the external area:

Cables exit via a grommet. Connections are made by copper threaded terminals with a dedicated neutral. A connection for ground is available, either internally or externally, and can be used as an earth terminal.

RACCORDEMENT


Box blindé :

Le passage des câbles se fait à travers une buse métallique assurant l'étanchéité en rayonnement entre l'intérieur de la cage et celui du box blindé. Le raccordement se fait sur tiges filetées en cuivre avec une borne de neutre repérée. Un plot de reprise de masse est disponible pour reprendre un câble de Terre.

Box non blindé :

Le passage de câble se fait à travers un passe fils isolant. Le raccordement se fait sur tiges filetées en cuivre avec une borne de neutre dédiée. Un plot de reprise de masse, pouvant être mis à l'intérieur ou à l'extérieur, est disponible pour reprendre un câble de Terre.

	Version	Dimensions in mm													
N° Specification		A	В	C max.	D ^{±0,5}	E ^{±0,5}	F ^{±0,5}	G ^{±0,5}	J	K	L	R	м ^{±0,5}	Р	N
BCM - 2010	10/20	425	170	110	37	70	290	192	0 33	35	M33 x 2	0 26	46	M6	50
BCM - 2016	10/14/20/24	560	170	110	37	70	420	192	0 33	35	M33 x 2	0 26	46	М6	50
BCM - 2016	50/54	425	170	110	37	70	290	192	0 33	35	M33 x 2	0 26	46	М6	50
BCM - 2032	10/14/20/24	560	170	110	37	70	420	192	0 33	35	M33 x 2	0 26	46	M8	50
BCM - 2032	50/54	425	170	110	37	70	290	192	0 33	35	M33 x 2	0 26	46	M8	50
BCM - 2064	10/14/20/24	700	200	200	50	50	600	222	0 52	140	M60 x 2	0 50	80	M8	50
BCM - 2064	50/54	610	200	110	50	50	510	222	0 52	45	M60 x 2	0 50	80	M8	50
BCM - 2100	10/14/20/24	700	200	200	50	50	600	222	0 52	140	M60 x 2	0 50	80	M8	50
BCM - 2100	50	610	200	110	50	50	510	222	0 52	45	M60 x 2	0 50	80	M8	50
BCM - 2125	10/14/20/24	700	200	200	50	50	600	222	0 52	140	M60 x 2	0 50	80	M8	50
BCM - 2125	50	610	200	110	50	50	510	222	0 52	45	M60 x 2	0 50	80	M8	50
BCM - 4010	10/20	560	250	110	37	70	420	272	0 33	35	M33 x 2	0 26	46	М6	50
BCM - 4016	10/14/20/24	570	250	160	37	70	430	272	0 33	35	M33 x 2	0 26	46	М6	50
BCM - 4016	50/54	560	250	110	37	70	420	272	0 33	35	M33 x 2	0 26	46	М6	50
BCM - 4032	10/14/20/24	570	250	160	37	70	430	272	0 33	35	M33 x 2	0 26	46	M8	50
BCM - 4032	50/54	560	250	110	37	70	420	272	0 33	35	M33 x 2	0 26	46	M8	50
BCM - 4064	10/14/20/24	700	320	200	50	50	600	342	0 52	140	M60 x 2	0 50	80	M8	50
BCM - 4064	50/54	610	320	110	50	50	510	342	0 52	45	M60 x 2	0 50	80	M8	50
BCM - 4100	10/14/20/24	700	320	200	50	50	600	342	0 52	140	M60 x 2	0 50	80	M8	50
BCM - 4100	50	610	320	110	50	50	510	342	0 52	45	M60 x 2	0 50	80	М8	50
BCM - 4125	10/14/20/24	700	320	200	50	50	600	342	0 52	140	M60 x 2	0 50	80	M8	50
BCM - 4125	50	610	320	110	50	50	510	342	0 52	45	M60 x 2	0 50	80	М8	50
Référence	Version	A	В	C max.	D ^{±0,5}	E ±0,5	F ^{±0,5}	G ^{±0,5}	J	К	L	R	M ^{±0,5}	P	N
		Dimensions en mm													

Page revised - *Version* 10/15 Tel : + 33 (0)1 49 23 10 00 www.exxelia.com - info@exxelia.com

TRAP-DOOR ACCESS

Shielded trap-door:

Easy mounting with a gasket mechanical stop to prevent crushing.

External trap-door:

This is a safety trap-door for electrical security.

FERMETURE DES TRAPPES

Trappe blindée :

Le montage de la plaque du box blindé est facile et l'écrasement du joint est controlé (butée mécanique).

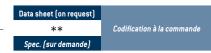
Trappe non blindée :

La fermeture de cette trappe permet d'assurer la sécurité électrique des personnes.

N° Specification Single phase (+N)	N° Specification Three phase (+N)	Current max.	Rated voltage U _R (Vrms) (1)		Max. ohmic	Max. leakage current under 1 V for ground/neutral (mA) (2)				Approxymativ	Approxymative weight (kg)	
			50-60 Hz	50-60 Hz	resistance per line	50 Hz		400 Hz		4m / N		
		(A)	20-00 HZ	5U-6U HZ	(m Ω)	1p+N	3p+N	1p+N	3p+N	1p+N	3p+N	
BCM - 2010 - 10	BCM - 4010 - 10	10	250	250	75	5	10	40	80	5	11	
BCM - 2010 - 20	BCM - 4010 - 20	10	250	250	75	2	5	15	25	5	11	
BCM - 2016 - 10	BCM - 4016 - 10	16	250	-	55	10	20	-	-	8	16	
BCM - 2016 - 14	BCM - 4016 - 14	16	-	250	55	-	-	80	160	8	16	
BCM - 2016 - 20	BCM - 4016 - 20	16	250	-	55	3	6	-	-	8	16	
BCM - 2016 - 24	BCM - 4016 - 24	16	-	250	55	-	-	20	40	8	16	
BCM - 2016 - 50	BCM - 4016 - 50	16	250	-	30	2	5	-	-	5,5	13	
BCM - 2016 - 54	BCM - 4016 - 54	16	-	250	30	-	-	15	25	5,5	13	
BCM - 2032 - 10	BCM - 4032 - 10	32	250	-	15	15	30	-	-	10	18	
BCM - 2032 - 14	BCM - 4032 - 14	32	-	250	15	-	-	110	220	10	18	
BCM - 2032 - 20	BCM - 4032 - 20	32	250	-	15	6	10	-	-	10	18	
BCM - 2032 - 24	BCM - 4032 - 24	32	-	250	15	-	-	40	80	10	18	
BCM - 2032 - 50	BCM - 4032 - 50	32	250	-	8	2	5	-	-	9	14	
BCM - 2032 - 54	BCM - 4032 - 54	32	-	250	8	-	-	15	25	9	14	
BCM - 2064 - 10	BCM - 4064 - 10	64	250	-	7,5	25	45	-	-	18	29	
BCM - 2064 - 14	BCM - 4064 - 14	64	-	250	7,5	-	-	170	340	18	29	
BCM - 2064 - 20	BCM - 4064 - 20	64	250	-	7,5	10	20	-	-	18	29	
BCM - 2064 - 24	BCM - 4064 - 24	64	-	250	7,5	-	-	80	160	18	29	
BCM - 2064 - 50	BCM - 4064 - 50	64	250	-	4	2	5	-	-	14	20	
BCM - 2064 - 54	BCM - 4064 - 54	64	-	250	4	-	-	15	25	14	20	
BCM - 2100 - 10	BCM - 4100 - 10	100	250	-	3	45	90	-	-	20	31	
BCM - 2100 - 14	BCM - 4100 - 14	100	-	250	3	-	-	340	680	20	31	
BCM - 2100 - 20	BCM - 4100 - 20	100	250	-	3	15	30	-	-	20	31	
BCM - 2100 - 24	BCM - 4100 - 24	100	-	250	3	-	-	110	220	20	31	
BCM - 2100 - 50	BCM - 4100 - 50	100	250	250	2	7,5	15	55	110	14	20	
BCM - 2125 - 10	BCM - 4125 - 10	125	250	-	2,5	70	140	-	-	20	34	
BCM - 2125 - 14	BCM - 4125 - 14	125	-	250	2,5	-	-	550	1100	20	34	
BCM - 2125 - 20	BCM - 4125 - 20	125	250	-	2,5	25	50	-	-	20	34	
BCM - 2125 - 24	BCM - 4125 - 24	125	-	250	2,5	-	-	200	400	20	34	
BCM - 2125 - 50	BCM - 4125 - 50	125	250	250	1,5	15	30	100	200	14	20	
Référence Monophasé (+N)	Référence Triphasé (+N)	Intensité max. (A)	50.000	400.11	Résistance	1p+N	3p+N	1p+N	3p+N	4 11		
			50-60 Hz 400 Hz		ohmique par voie max.	50 Hz		400 Hz		1p+N	3p+N	
			Tension nom	inale (U _R) (1)	(m Ω)	Courant de fuite max. sous 1		V entre neutre et terre (mA) (2)		Masse approximatif (kg		

(1) Three phase main : 250/ 440 V_{CA}

(1) Réseau triphasé 250/440 V eff.

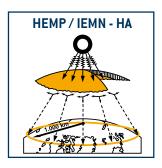

[2] In practice the value achieved may be somewhat higher depending on the harmonic content of the neutral waveform.

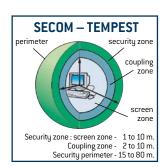
(2) En pratique la valeur peut être plus élevée en fonction des tensions harmoniques présentes sur le neutre.

Single phase* or Three phase** + N	Current				
2*, 4**	010, 016, 032, 064, 100, 125				
Monophasé* ou Triphasé** + N	Intensité				

	Version	
-	10, 14, 20, 24, 50, 54	
	Version	

Généralités


PHENOMENA


Radio frequency and electromagnetic interference Interférences électromagnétiques et radiofréquence

LIGHTNING / FOUDRE

LES PHÉNOMÈNES

Impulsions électromagnétiques d'origine nucléaire

Note: Generally the filters are mounted in the coupling zone.

Sécom : Safety of communication

- Sécurité de communication
 - Anticompromission

FUNCTION OF A FILTER OR OF A PROTECTION SYSTEM

The function of an antiparasitic filter is to reduce the disturbance level to an admissible value to comply with the different standards or to reduce the sensitivity of an appliance within a given frequency range.

For certain applications (HEMP - Lightning) protection against overvoltage is integrated into or added to the filter.

RÔLE D'UN FILTRE OU D'UNE PROTECTION

La fonction d'un filtre antiparasites est de réduire le niveau des perturbations à une valeur admissible pour le respect de différentes normes, ou diminuer la sensibilité d'un matériel (susceptibilité) dans un spectre de fréquence déterminé.

Pour certaines applications (IEMN - Foudre), une protection contre les surtensions est intégrée ou associée au filtre.

OPERATING MODE OF A FILTER

Antiparasitic filters are of the mismatched "Low-pass" type, except for special applications in telephone networks or in data transmission where they can be matched with impedance values of 50, 75, 100,120 or 600 0hms in their band pass-range.

These filters operate by impedance mismatch in the frequency in which they are to provide their efficiency called "insertion loss".

When selecting the structure of a filter, it is necessary to take into account the source and load impedance values, within the frequency range for which the disturbance level is to be reduced.

MODE D'ACTION D'UN FILTRE

Les filtres antiparasites sont du type "passe-bas" non adaptés, sauf applications particulières pour des circuits téléphoniques, ou de transmission de données où ils peuvent être adaptés en impédance de 50, 75, 100,120 ou 600 0hms dans leur bande passante.

Ces filtres agissent par désadaptation d'impédance dans la gamme de fréquences pour laquelle on souhaite leur efficacité appelée "affaiblissement d'insertion".

Le choix de la structure d'un filtre doit donc s'effectuer en tenant compte des impédances de source et de charge supposées, dans la gamme de fréquences pour laquelle on veut réduire le niveau des perturbations.

ACTION OF A PROTECTION SYSTEM

A protection system acts as follows:

1st stage surge arrester Suitable component 2nd stage filter Protected output Input Entrée 1er étage parasurtenseur Élément de coordination 2ème étage filtre Sortie protégée

The first (1st) stage consists of a surge arrester allowing high currents due to lightning or NEMP to be dispersed.

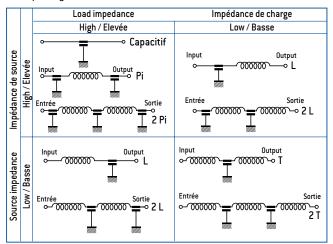
The second (2nd) stage consists of a low pass filter which allows the attenuation of the residual voltage caused by the above. This also ensures the electromagnetic integrity of the shielded cage (Faraday cage). In function of the system a suitable component is inserted between the two stages to ensure correct operation.

MODE D'ACTION D'UNE PROTECTION

Le principe d'action d'un système de protection est le suivant :

Le 1er étage, constitué d'un parasurtenseur permet l'écoulement à la terre des forts courants dus à l'agression foudre ou IEMN.

Le 2e étage, constitué d'un filtre passe-bas, permet d'atténuer la tension résiduelle due à l'agression. De plus, le cas échéant, il conserve l'intégrité électromagnétique de l'enceinte blindée (cage de Faraday). L'insertion d'un élément de coordination entre les deux étages permet le fonctionnement correct du système.



Page revised - Version 10/15 Tel: + 33 (0)1 49 23 10 00 www.exxelia.com - info@exxelia.com

Généralités

SELECTION OF A FILTER STRUCTURE

The selection of a structure is determined according to the attenuation desired at the lowest frequency, considering the source and load impedance values and the slopes of attenuation possible for the Fc cutoff frequency of the filter.

Filter Structures / Structure des filtres

INSERTION LOSS

Definition: Antiparasitic filters generally operate by impedance mismatch within a given frequency range.

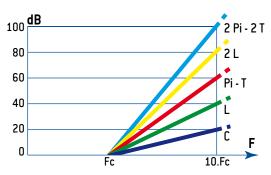
The insertion loss of a filter in a supply or transmission circuit is defined as the ratio between the voltage values occuring at the line terminal leads immediately after the insertion point, before and after insertion.

Different standards specify the attenuation measurement possibilities in asymmetric (common mode) or symmetric (differential mode) attenuation, measurements performed on load or no-load circuits.

The following standards are applicable:

Standard GAM T 21 Standard MIL STD 220 C Standard CISPR Edition 17

The insertion loss performance is specified in the catalogue, measured according to the standard GAM T 21 or MIL STD 220 C in no-load conditions under an impedance of 50 Ω . This measurement enables to check the compliance of the manufactured batch and to compare certain filters.


The real efficiency of a filter on an equipment can only be obtained by disturbance measurement taking into account the source and operating impedance.

For signal or data transmission filters usually defined in matched impedances, attenuation in the pass-band is measured according to the standard MIL 18327 E.

Note: The insertion attenuation curves of EXXELIA TECHNOLOGIES filters are curves whose attenuation is guaranteed on load and at rated current.

CHOIX DE LA STRUCTURE D'UN FILTRE

Le choix de la structure doit être défini suivant l'affaiblissement souhaité à la fréquence la plus basse, en tenant compte des impédances de source et de charge et des pentes d'atténuation possibles à partir de la fréquence de coupure Fc du filtre.

Attenuation by structure / Atténuation par structure

AFFAIBLISSEMENT D'INSERTION

Définition : Les filtres antiparasites agissent en général par désadaptation d'impédance dans une gamme de fréquences données.

L'affaiblissement d'insertion d'un filtre, dans un circuit d'alimentation ou de transmission, est défini comme le rapport des tensions apparaissant aux bornes de la ligne immédiatement après le point d'insertion, avant et après insertion.

Différentes normes définissent les conditions de mesure d'atténuation asymétrique (mode commun) ou symétrique (mode différentiel), sur circuit à vide ou en charge.

On peut citer:

Norme GAM T 21 Norme MIL STD 220 C Norme CISPR Publication 17

Les performances d'affaiblissement d'insertion sont généralement indiquées sur catalogue, mesurées suivant normes GAM T 21 ou MIL STD 220 C à vide sous impédance de 50 Ω . Cette mesure permet de vérifier la conformité de lot de fabrication et de comparer certains filtres.

L'efficacité réelle d'un filtre sur un matériel ne peut être obtenue que par des mesures de niveau de perturbation tenant compte des impédances de source et d'utilisation.

Pour des filtres de SIGNAUX ou transmissions de données généralement définis en impédances adaptées, l'affaiblissement dans la bande passante est mesuré suivant la norme MIL 18327 E.

Nota : Les courbes d'affaiblissement d'insertion des filtres EXXELIA TECHNOLOGIES sont des courbes dont l'atténuation est garantie en charge sous intensité nominale.

www.exxelia.com - info@exxelia.com Page revised - Version 10/15

Généralités

TECHNOLOGY OF THE COMPONENTS

1 - The capacitors

The capacitors are usually made of plastic film (polyester or metallized polypropylene, hence self-healing) of coaxial shape for feed through installation. The capacitors are non-inductive by metal spraying of the terminals and by-pass mounting means that the resonance of the capacitor is at a very high frequency.

2 - The inductors

The inductances shall comply with the following criteria:

- Unsaturation of the the magnetic circuit at rated current of the filter.
- Circuit response within the frequency range to be protected.
- Minimum voltage drop mainly for the a.c. voltage system filters (50 Hz - 400 Hz).
- Minimum dissipation in copper.

The most commonly used magnetic materials are : Powdered iron, Permalloy (iron-nickel alloy), ferrite and oriented-grain iron circuit.

3 - Peak limiting components

Lightning arresters, varistors, Zener or Transil diodes... etc, are selected in relation to the pulse currents defined to comply with an assigned residual voltage.

4 - The connections

The connections are usually made of tinned brass or copper, screw or solder terminals according to the current level.

5 - frames or cases

Usually made of tinned steel, nickel-plated brass or stainless steel.

MAIN SELECTION CRITERIA

1 - For a filter

- a) Desired attenuation at the lowest frequency to be protected. The attenuation of a filter varies depending on frequency. Usually the lowest frequency to be protected is chosen.
- b) Rated current of the circuit (IR).

Maximum peak currents:

- 2 I_R during 30 s
- 4 I_R during 5 s
- 10 I_R during 1 s
- c) Operating voltage: direct current, 50-60-400 Hz alternating current and other frequencies.
- d) Desired or assigned dielectric test voltage.
- e) Operating temperature range.
- f) Leakage current (if applicable).
- g) Voltage drop (if applicable) or ohmic resistance of the circuit.
- h) Mechanical or climatic environmental stress.

Note: For SIGNALS or data transmission circuits

- Frequencies and signal shapes.
- Characteristics impedance of the circuits.

TECHNOLOGIE DES CONSTITUANTS

1 - Les condensateurs

Les condensateurs sont en général réalisés en film plastique (polyester ou polypropylène métallisé, donc autocicatrisables) de forme coaxiale pour montage en traversée de paroi. Les capacités sont aselfiques par shooppage des armatures et le montage en by-pass permet de situer la résonance propre du condensateur à une fréquence très élevée.

2 - Les inductances

Les inductances sont prévues pour respecter les critères suivants :

- Non-saturation du circuit magnétique à l'intensité nominale du filtre.
- Réponse du circuit dans la gamme de fréquences à protéger.
- Chute de tension minimale principalement pour les filtres de réseau alternatif (50 Hz 400 Hz).
- Dissipation minimale dans le cuivre.

Les matériaux magnétiques les plus couramment utilisés sont : Poudre de fer, Permalloy (alliage fer-nickel), ferrite et circuit fer à grains orientés.

3 - Les composants d'écrêtage

Les éclateurs, varistances, diodes Zener ou Transil..., sont choisis en fonction de courants impulsionnels définis pour le respect d'une tension résiduelle imposée.

4 - Les connexions

Les connexions sont réalisées généralement en laiton étamé ou cuivre, bornage à vis ou à souder suivant le calibre d'intensité.

5 - Les corps ou boîtiers

Généralement en acier étamé, laiton nickelé ou acier inoxydable.

PRINCIPAUX CRITÈRES DE CHOIX

1 - Pour un filtre

- a) Affaiblissement souhaité à la fréquence la plus basse à protéger. L'atténuation d'un filtre évolue en fonction de la fréquence, généralement choisie pour la plus basse à protéger.
- b) Courant nominal du circuit (I_R) .

Surintensités admissibles :

- 2 I_R pendant 30 s
- 4 I_R pendant 5s
- 10 I_R pendant 1 s.
- c) Tension de service : courant continu, courant alternatif 50-60-400 Hz et autres fréquences.
- d) Tension d'essai diélectrique souhaitée ou imposée.
- e) Gamme de températures d'utilisation.
- f) Courant de fuite (éventuellement).
- g) Chute de tension (éventuellement) ou R ohmique du circuit.
- h) Contraintes d'environnement mécanique ou climatique.

Nota : Pour SIGNAUX ou circuits de transmission de données

- Fréquences et formes de SIGNAUX.
- Impédance caractéristique des circuits.

Page revised - Version 10/15 Tel : + 33 (0)1 49 23 10 00 www.exxelia.com - info@exxelia.com

Généralités

2 - For a protection system

In addition to the criteria already mentioned:

- Origin, shape and amplitude of the interfering currents.
- Residual voltage admitted by the equipment or system to be protected.

RECOMMENDATIONS FOR FILTER AND PROTECTION SYSTEM INSTALLATION

Installation is crucial to ensure the performance of the filter.

We recommend feed through mounting as it avoids high frequency coupling between input and output cables.

The surface accommodating the filter shall be conductive, stripped clean, covered with a conductive coating and integrated into the reference earth of the equipment.

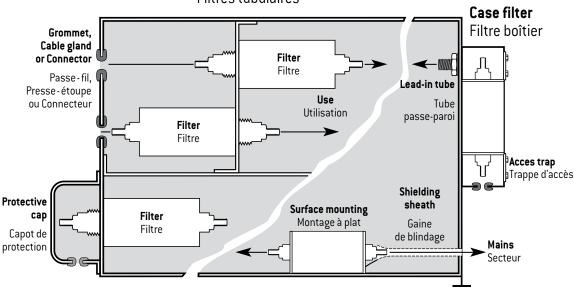
The tubular filter frames or the copper or brass connections shall be under no stress. The torque values for the attachment and coupling fittings shall be complied with.

2 - Pour une protection

En plus des critères précédents :

- Origine, forme et amplitude des courants de l'agression.
- Tension résiduelle admise par le matériel ou système à protéger.

RECOMMANDATIONS POUR MONTAGE DES FILTRES ET PROTECTIONS


Le montage est déterminant pour garantir les performances du filtre.

Nous conseillons de toujours privilégier le montage en traversée de paroi qui permet d'éviter le couplage en haute fréquence entre les câbles d'entrée et de sortie.

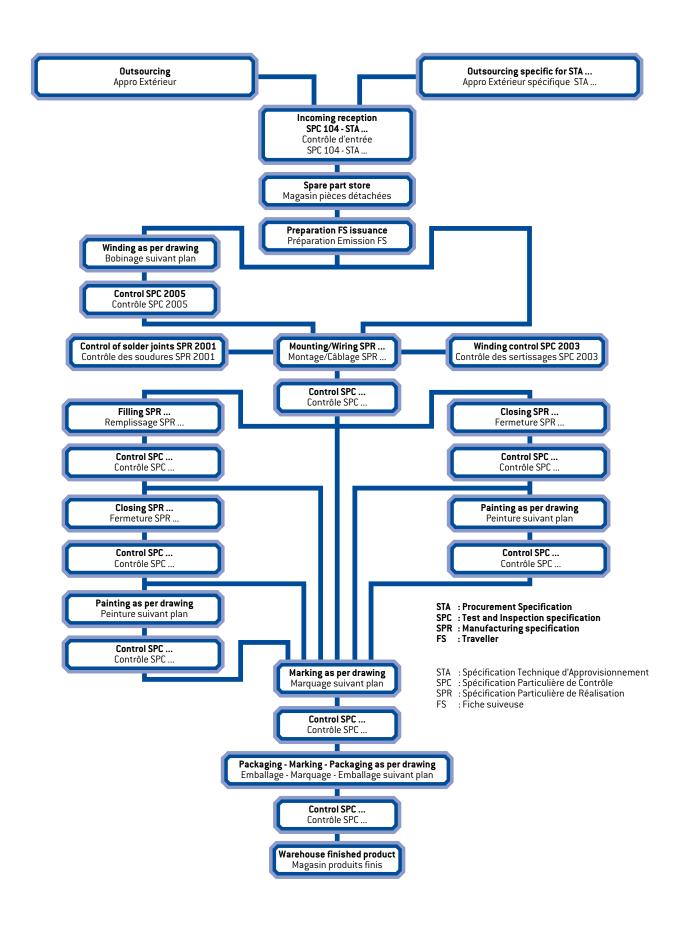
La surface d'assise sur laquelle repose le filtre doit être conductrice, décapée, munie d'un revêtement conducteur qui fait partie de la masse de référence du matériel.

Aucune contrainte ne doit être exercée sur les corps des filtres tubulaires ou sur les connexions en cuivre ou laiton. Les couples de serrage des fixations et raccordements doivent être respectés.

Tubular filtersFiltres tubulaires

Examples of installation on cabinets or cases / Exemples de montage sur armoire ou coffret

To be avoided:


- Looping of the input and output cables.
- Running high energy cables and low energy cables side by side.
- Mounting L structures in the wrong direction.
- Grounding cable too long.

À éviter :

- Bouclage des câbles entrée-sortie.
- Cheminement contigu des câbles énergie et des câbles bas niveau.
- Mauvais sens de montage pour les structures en L.
- Tresse de mise à la masse trop longue.

Manufacture and inspection chart

Diagramme de fabrication et contrôle

Page revised - Version 10/15 Tel : + 33 (0)1 49 23 10 00 www.exxelia.com