Fiers d'être sur Mars

Deux condensateurs Exxelia à bord d'Insight


La sonde InSight s'est posée sur Mars ce Lundi 26 Novembre avec à son bord deux condensateurs film spécifiques Exxelia. Ces condensateurs de précision sont montés sur le sismomètre. 

Published on 29 Nov 2018 by Stephane PERES

Exxelia Ohmcraft’s Small, Low-Noise Resistors Maximize Design Options and Accuracy for Sensor Manufacturers

For more than 25 years, leading sensor manufacturers have turned to Exxelia Ohmcraft to provide small-form-factor, ultra-low-noise surface mount resistors to be used in a variety of critical sensor applications. In these applications, Exxelia Ohmcraft’s resistors enable designers to miniaturize the sensor’s footprint or accommodate multiple sensors in close proximity to each other—all while increasing accuracy of the end products. Resistors have a certain amount of electrical noise that is inherent in their construction, and the higher the noise, the more distorted the signal can become. Exxelia Ohmcraft’s high-resistance, low-noise chip resistors provide clearer signals to the sensor electronics, thereby improving their accuracy. To ensure requirements are met for specialty sensors such as those used to measure acceleration, velocity, or vibration, Exxelia Ohmcraft works closely with design engineers, who appreciate the combination of high performance, reliability, and small form factor that the company can provide. “Finding resistors that check all of these boxes can be a challenge for sensor designers. At Exxelia Ohmcraft, our understanding of these requirements allows us to provide the highest performing solution at the lowest possible cost,” said Eric Van Wormer, Vice President of Exxelia Ohmcraft. "In sensor electronics, it can be difficult to distinguish the signal one is trying to measure from the noise of the surrounding environment, but our low-noise resistors ensure that the signal quality is maximized.” Exxelia Ohmcraft’s technology utilizes the proprietary Micropen electronic printing system to “print” precise, narrow, serpentine lines with resistive ink on a ceramic substrate, producing higher performance resistors over a wider range of values on a smaller surface area than is possible with conventional film resistor technology.