Film Capacitors

Condensateurs film

FILM CAPACITORS

CONDENSATEURS FILM

www.exxelia.com

EXXELIA TECHNOLOGIES

Code OTAN: F 1379

Certifications ISO 9001 V 2008: FR 006311-2

EN 9100: 2009. FR 006310

S.A.S. au capital de 17 293 800 €

N° SIREN 652 041 781

Code APE 321 A

Headquarters and Sales Department Siège social et Services Commerciaux 93, rue Oberkampf

F-75540 PARIS CEDEX 11 Tél.: + 33 (0) 1 49 23 10 00 Fax: + 33 (0) 1 43 57 05 33 e-mail: info@exxelia.com

Plants / Usines:

Z.A.E. du Chêne Saint Fiacre 1, rue des Temps Modernes F-77600 CHANTELOUP-EN-BRIE Tél.: + 33 (0) 1 60 31 70 00 Fax: + 33 (0) 1 60 31 77 17

105, rue du Général - Leclerc - BP 33 F-67441 MARMOUTIER CEDEX Tél. : + 33 (0) 3 88 70 62 00 Fax : + 33 (0) 3 88 70 88 31

Specifications are subject to change without notice. All statements, information and data given herein are presented without guarantee, warranty or responsibility of any kind, expressed or implied.

Les informations contenues dans ce catalogue sont données à titre indicatif. EXXELIA TECHNOLOGIES décline toute responsabilité quant à leur usage et aux conséquences qui peuvent en résulter et se réserve tous droits de modification ou d'adaptation sans préavis.

GENERAL INFORMATION GÉNÉRALITÉS

PARTS LIST

Répertoire alphanumérique

Model	Designation	Page	Désignation	Modèle
64-A 64 S (T)	METALLIZED P.C. and P.P.S.	22	P.C. et P.P.S. MÉTALLISÉ	A 64-A 64 S (
64 S4-A 74 S4 (T) I 73 A-BI 73 R	METALLIZED P.C. and P.P.S. HIGH VOLTAGE POLYESTER	21 116	P.C. et P.P.S. MÉTALLISÉ POLYESTER H.T.	A 64 S4-A 74 S4 (BI 73-R 7
IK X2/Y-BIK P X/Y-BIK CR	METALLIZED POLYESTER	35	POLYESTER MÉTALLISÉ	BIK X2/Y-BIK P X/Y-BIK (
A 1-CA 2-CA 17-CA 18-CA 19	SILVERED MICA	125	MICA ARGENTÉ	CA 1-CA 2-CA 17-CA 18-CA 1
A15-CA 20-CA 30-CA 35-CA 40	SILVERED MICA	120	MICA ARGENTÉ	CA CA 20-15-CA 30-CA 35-CA 4
A 152 CA 158	SILVERED MICA	121	MICA ARGENTÉ	CA 152 CA 15
M 04 CM 13-CMR 03 CMR 08 K 8 (T)	SILVERED MICA PPS FILM-FOIL	122 - 123 23	MICA ARGENTÉ P.C. et P.P.S. À ARMATURES	CM 04 CM 13-CMR 03 CMR (
T 72	HIGH-VOLTAGE RECONSTITUTED MICA	101	COMPOSITE MICA RECONSTITUÉ H.T.	EK 8 (
T 77	HIGH-VOLTAGE RECONSTITUTED MICA	102	COMPOSITE MICA RECONSTITUÉ H.T.	HT 7
T 78-HT 78 P	HIGH-VOLTAGE RECONSTITUTED MICA	104	COMPOSITE MICA RECONSTITUÉ H.T.	HT 78-HT 78
T 86-HT 86 P	HIGH-VOLTAGE RECONSTITUTED MICA	105	COMPOSITE MICA RECONSTITUÉ H.T.	HT 86-HT 86
T 96	HIGH-VOLTAGE RECONSTITUTED MICA	103	COMPOSITE MICA RECONSTITUÉ H.T.	HT 9
T 97-HT 97 P	HIGH-VOLTAGE RECONSTITUTED MICA	106	COMPOSITE MICA RECONSTITUÉ H.T.	HT 97-HT 97
iB 99	METALLIZED POLYPROPYLENE	70	POLYPROPYLÈNE MÉTALLISÉ	IGB
1PE T	METALLIZED P.C. and P.P.S.	24	P.C. et P.P.S. MÉTALLISÉ	K1PI
CP 4 UA T	PLASTIC FILM + FOILS	25	FILMS PLASTIQUES + ARMATURES	KCP 4 U
M 7 (T) M 21 (T)	METALLIZED P.C. and P.P.S. METALLIZED P.C. and P.P.S.	23 13	P.C. et P.P.S. MÉTALLISÉ P.C. et P.P.S. MÉTALLISÉ P.C. et P.P.S. MÉTALLISÉ	KM 7 (
M 50 (T)-KM 60 (T)	METALLIZED P.C. and P.P.S.	11	P.C. et P.P.S. MÉTALLISÉ	KM 50 (T)-KM 60 (
M 78-KM 82	METALLIZED P.C. and P.P.S.	14	P.C. et P.P.S. MÉTALLISÉ	KM 78-KM
M 78 R (T)-KM 82 R (T)	METALLIZED P.C. and P.P.S.	14	P.C. et P.P.S. MÉTALLISÉ	KM 78 R (T)-KM 82 R (
M 78 RS-KM 82 RS	METALLIZED P.C. and P.P.S.	14	P.C. et P.P.S. MÉTALLISÉ	KM 78 RS -KM 82
M 90 (T)	METALLIZED P.C. and P.P.S.	15	P.C. et P.P.S. MÉTALLISÉ	KM 90 (
M 94	METALLIZED P.C. and P.P.S.	16	P.C. et P.P.S. MÉTALLISÉ	KM
M 97 (T)	METALLIZED P.C. and P.P.S.	17	P.C. et P.P.S. MÉTALLISÉ	KM 97 (
M 111 (T)	METALLIZED P.C. and P.P.S.	12	P.C. et P.P.S. MÉTALLISÉ	KM 111
M 311 (T)	METALLIZED P.C. and P.P.S.	13	P.C. et P.P.S. MÉTALLISÉ P.C. et P.P.S. MÉTALLISÉ	KM 311 KM 501 (T)-KM 601
M 501 (T)-KM 601 (T) M 711 (T)	METALLIZED P.C. and P.P.S. METALLIZED P.C. and P.P.S.	11 23	P.C. et P.P.S. METALLISE P.C. et P.P.S. MÉTALLISÉ	KM 501 (TJ-KM 601) KM 711
M 711 (I) SP 4 UA T	PLASTIC FILM + FOIL	26	FILMS PLASTIQUES + ARMATURES	KM 711 (
F 1 MF 5	SILVERED MICA	124	MICA ARGENTÉ	MF 1 MF
K 12 (T)	METALLIZED P.C. and P.P.S.	23	P.C. et P.P.S. MÉTALLISÉ	MK 12 (
KT	METALLIZED POLYESTER	40	POLYESTER MÉTALLISÉ	M
RA HT-MPA HT	HIGH VOLTAGE METALLIZED POLYESTER	34	POLYESTER MÉTALLISÉ H.T.	MRA HT-MPA
HM 912	METALLIZED PLASTIC FILM	54	FILM PLASTIQUE MÉTALLISÉ	РНМ 9
HM 912 N	METALLIZED PLASTIC FILM	55	FILM PLASTIQUE MÉTALLISÉ	PHM 912
HM 912 R1-PHM 912 R2	METALLIZED PLASTIC FILM	56	FILM PLASTIQUE MÉTALLISÉ	PHM 912 R1-PHM 912 I
_P 4-PLP 40	POLYPROPYLENE + PAPER OIL-IMPREGNATED	113	POLYPROPYLÈNE + PAPIER IMPRÉGNÉ HUILE	PLP 4-PLP
LP 5-PLP 50 - PLP 51 LP 8-PLP 80	POLYPROPYLENE + PAPER OIL-IMPREGNATED POLYPROPYLENE + PAPER OIL-IMPREGNATED	114 - 115 111	POLYPROPYLÈNE + PAPIER IMPRÉGNÉ HUILE POLYPROPYLÈNE + PAPIER IMPRÉGNÉ HUILE	PLP 5-PLP 50 - PLP
LP 34-PLP 340	POLYPROPYLENE + PAPER OIL-IMPREGNATED	112	POLYPROPYLÈNE + PAPIER IMPRÉGNÉ HUILE	PLP 34-PLP 3
LS 3	POLYSTYRENEE + FOIL	92	POLYSTYRÈNE + ARMATURES DÉBORDANTES	PLS
LS 5	POLYSTYRENEE + FOIL	93	POLYSTYRÈNE + ARMATURES DÉBORDANTES	PLS
LS 7-PLS 8	POLYSTYRENEE + FOIL	94	POLYSTYRÈNE + ARMATURES DÉBORDANTES	PLS 7-PLS
M 7-PM 12	METALLIZED POLYESTER	31	POLYESTER MÉTALLISÉ	PM 7-PM
M 21-PM 31-PM 41	METALLIZED POLYESTER	33	POLYESTER MÉTALLISÉ	PM 21-PM 31-PM
M 50-PM 60	METALLIZED POLYESTER	30	POLYESTER MÉTALLISÉ	PM 50-PM (
M 67 (T)-PM 72 (T)	METALLIZED P.C. and P.P.S.	19	P.C. et P.P.S. MÉTALLISÉ	PM 67 (T)-PM 72 (
M 89 M 89 R	METALLIZED POLYESTER METALLIZED POLYESTER	42 43	POLYESTER MÉTALLISÉ POLYESTER MÉTALLISÉ	PM 8
M 90	METALLIZED POLYESTER METALLIZED POLYESTER	44	POLYESTER MÉTALLISÉ POLYESTER MÉTALLISÉ	PM S
M 90 R 1- PM 90 R 2	METALLIZED POLYESTER	45	POLYESTER MÉTALLISÉ	PM 90 R 1- PM 90 F
M 90 RT	METALLIZED POLYESTER	41	POLYESTER MÉTALLISÉ	PM 90
M 94-PM 94 N	METALLIZED P.E.N.	46 - 47	P.E.N. MÉTALLISÉ	PM 94-PM 94
M 96-PM 96 T	METALLIZED POLYESTER	39	POLYESTER MÉTALLISÉ	PM 96-PM 9
M 98-PM 980	METALLIZED PLASTIC FILM	71	FILM PLASTIQUE MÉTALLISÉ	PM 98-PM 98
4 720-PM 730	METALLIZED POLYESTER	32	POLYESTER MÉTALLISÉ	PM 720-PM 7
M 907-PM 907 S	METALLIZED POLYESTER	48	POLYESTER MÉTALLISÉ	PM 907-PM 907
4 907 N	METALLIZED POLYESTER	49	POLYESTER MÉTALLISÉ	PM 907
4 907 R1-PM 907 R2 4 948-PM 948 N	METALLIZED POLYESTER METALLIZED POLYESTER	50 51 - 52	POLYESTER MÉTALLISÉ POLYESTER MÉTALLISÉ	PM 907 R1-PM 907 PM 948-PM 948
MA 64 (T)-PMR 64 (T)	METALLIZED POLYESTER METALLIZED P.C. and P.P.S.	18	PULYESTER METALLISE P.C. et P.P.S. MÉTALLISÉ	PM 948-PM 948 PMA 64 (T)-PMR 64
MR 4 (T)	METALLIZED P.C. and P.P.S.	20	P.C. et P.P.S. MÉTALLISÉ	PMR 4 (
PA 1/2 - PPA M1/M2	METALLIZED POLYPROPYLENE	72	POLYPROPYLÈNE MÉTALLISÉ	PPA 1/2 - PPA M1/I
PA FR1-PPA FR2	METALLIZED POLYPROPYLENE	73	POLYPROPYLÈNE MÉTALLISÉ	PPA FR1-PPA F
3A-PR 3A	METALLIZED POLYPROPYLENE + FOILS	88 - 89	POLYPROPYLÈNE MÉTALLISÉ + ARMATURES	PP 3A-PR
2 3M-PR 3M	METALLITED BOUNDEDON'S EVE OF SULL FOUND	87	POLYPROPYLÈNE MÉTALLISÉ + 2 ARMATURES	PP 3M-PR
	METALLIZED POLYPROPYLENE + 2 FILM-FOILS		POLYPROPYLÈNE MÉTALLISÉ	PP
	METALLIZED POLYPROPYLENE	69		
° 44 A2	METALLIZED POLYPROPYLENE METALLIZED POLYPROPYLENE	69 77	POLYPROPYLÈNE MÉTALLISÉ	PP 44
44 A2 44 R	METALLIZED POLYPROPYLENE METALLIZED POLYPROPYLENE METALLIZED POLYPROPYLENE	69 77 74 - 75	POLYPROPYLÈNE MÉTALLISÉ POLYPROPYLÈNE MÉTALLISÉ	PP 44 PP 44
2 44 A2 2 44 R 2 44 R5	METALLIZED POLYPROPYLENE METALLIZED POLYPROPYLENE METALLIZED POLYPROPYLENE METALLIZED POLYPROPYLENE	69 77 74 - 75 76	POLYPROPYLÈNE MÉTALLISÉ POLYPROPYLÈNE MÉTALLISÉ POLYPROPYLÈNE MÉTALLISÉ	PP 44 PP 44 PP 44
P 44 A2 P 44 R P 44 R5 P 72 A-PP 72 R	METALLIZED POLYPROPYLENE METALLIZED POLYPROPYLENE METALLIZED POLYPROPYLENE METALLIZED POLYPROPYLENE METALLIZED POLYPROPYLENE	69 77 74 - 75 76 66	POLYPROPYLÈNE MÉTALLISÉ POLYPROPYLÈNE MÉTALLISÉ POLYPROPYLÈNE MÉTALLISÉ POLYPROPYLÈNE MÉTALLISÉ	PP 44. PP 44 PP 44 PP 72 A-PP 72
P 44 A2 P 44 R P 44 R5 P 72 A-PP 72 R P 72 S	METALLIZED POLYPROPYLENE	69 77 74 - 75 76 66 67	POLYPROPYLÈNE MÉTALLISÉ POLYPROPYLÈNE MÉTALLISÉ POLYPROPYLÈNE MÉTALLISÉ POLYPROPYLÈNE MÉTALLISÉ POLYPROPYLÈNE MÉTALLISÉ POLYPROPYLÈNE MÉTALLISÉ	PP 44. PP 44 PP 44 PP 72 A-PP 72 PP 72 A-PP 75
2 44 A2 2 44 R 2 44 R 5 72 A-PP 72 R 2 72 S 2 73-PP 74-PP 75	METALLIZED POLYPROPYLENE	69 77 74 - 75 76 66 67 68	POLYPROPYLÈNE MÉTALLISÉ	PP 44 PP 44 PP 44 PP 72 A-PP 72 PP 73-PP 74-PP
P 44 A2 P 44 R P 72 A-PP 72 R P 72 S-PP 74-PP 75 P 78 A	METALLIZED POLYPROPYLENE	69 77 74 - 75 76 66 67	POLYPROPYLÈNE MÉTALLISÉ	PP 44. PP 44 PP 44 PP 72 A-PP 72 PP 73-PP 74-PP PP 78-PP 74-PP
P 44 A2 P 44 R P 44 R P 72 A-PP 72 R P 72 S P 73-PP 74-PP 75 P 78 A	METALLIZED POLYPROPYLENE	69 77 74 - 75 76 66 67 68 63	POLYPROPYLÈNE MÉTALLISÉ	PP 44 PP 44 PP 44 PP 72 A-PP 72 PP 73-PP 74-PP PP 78 PP 78
P 44 A2 P 44 A2 P 44 A R P 44 A R P 72 A - PP 72 R P 72 S P 73 - PP 74 - PP 75 P 78 A P 78 S	METALLIZED POLYPROPYLENE	69 77 74 - 75 76 66 67 68 63 64	POLYPROPYLÈNE MÉTALLISÉ	PP 44. PP 44 PP 44 PP 72 A-PP 72 PP 73-PP 74-PP PP 78 PP 78 PP 78
P 44 A2 P 44 R P 44 R P 44 R P 72 A-PP 72 R P 72 S P 73-PP 74-PP 75 P 78 A P 78 R P 78 S P 88 P 318-PP 418-PPS 13	METALLIZED POLYPROPYLENE POLYPROPYLENE FILM-FOIL	69 77 74-75 76 66 67 68 63 64 65 78-79	POLYPROPYLÈNE MÉTALLISÉ POLYPROPYLÈNE À ARMATURES	PP 44. PP 44 PP 44 PP 44 PP 72 A-PP 72 PP 73-PP 74-PP PP 75 PP 76 PP 77 PP 76 PP 77 PP 78
2 44 A2 2 44 R 2 44 R 2 72 A-PP 72 R 2 72 S 2 73-PP 74-PP 75 2 78 A 2 78 R 2 78 S 2 88 2 318-PP 418-PPS 13 2 95 16 A-PPS 16 R	METALLIZED POLYPROPYLENE POLYPROPYLENE FILM-FOIL POLYPROPYLENE FILM-FOIL	69 77 74-75 76 66 67 68 63 64 65 78-79 89	POLYPROPYLÈNE MÉTALLISÉ POLYPROPYLÈNE Á ARMATURES POLYPROPYLÈNE À ARMATURES	PP 44. PP 44 PP 44 PP 44 PP 72 - PP 72 PP 73 - PP 74 PP 73 - PP 74 PP 75 PP 76 PP 76 PP 77 PP 318 - PP 418 - PPS 16 A - PPS 16
P 44 A2 P 44 A R P 44 A R P 72 A - PP 72 R P 72 S P 73 - PP 74 - PP 75 P 78 A P 78 S P 88 P 318 - PP 418 - PP 513 P 516 A - PP 516 R RAHT	METALLIZED POLYPROPYLENE POLYPROPYLENE FILM-FOIL POLYPROPYLENE FILM-FOIL METALLIZED POLYPROPYLENE	69 77 74-75 76 66 67 68 63 64 65 78-79 89 81	POLYPROPYLÈNE MÉTALLISÉ POLYPROPYLÈNE A ARMATURES POLYPROPYLÈNE À ARMATURES POLYPROPYLÈNE À ARMATURES POLYPROPYLÈNE À ARMATURES	PP 44. PP 44 PP 44 PP 44 PP 72 A-PP 72 PP 73-PP 74-PP PP 75 PP 75 PP 76 PP 76 PP 77 PP 77 PP 77 PP 77 PP 78
P 44 A2 P 44 R P 44 R P 44 R P 72 R P 72 S P 73-PP 72 R P 78 A P 78 R P 78 S P 88 P 318-PP 418-PPS 13 P 516 A-PPS 16 R R AHT S 1 to PS 2	METALLIZED POLYPROPYLENE	69 77 74 - 75 76 66 67 68 63 64 65 78 - 79 89 81 90	POLYPROPYLÈNE MÉTALLISÉ POLYPROPYLÈNE À ARMATURES POLYPROPYLÈNE MÉTALLISÉ POLYPROPYLÈNE À ARMATURES POLYPROPYLÈNE MÉTALLISÉ POLYPROPYLÈNE MÉTALLISÉ POLYPROPYLÈNE MÉTALLISÉ	PP 44. PP 44 PP 44 PP 44 PP 44 PP 72 PP 72 PP 73 PP 74 PP 75 PP 78 PP 76 PP 78 PP 76 PP 318 PP 16 PP 56 PP 56 PP 57 PP 56 PP 57 P
P 44 A2 P 44 R P 44 R P 44 R P 44 R P 72 A-PP 72 R P 72 A-PP 72 R P 73-PP 74-PP 75 P 78 A P 78 R P 78 R P 88 P 318-PP 418-PPS 13 PS 16 A-PPS 16 R RA HT S +1 to PS +2 S +3 to PS +4	METALLIZED POLYPROPYLENE POLYPROPYLENE POLYPROPYLENE POLYPROPYLENE FILM-FOIL POLYPROPYLENE FILM-FOIL METALLIZED POLYPROPYLENE + FOILS	69 77 74-75 76 66 67 68 63 64 65 78-79 89 81 90 85	POLYPROPYLÈNE MÉTALLISÉ POLYPROPYLÈNE ARMATURES POLYPROPYLÈNE À ARMATURES POLYPROPYLÈNE MÉTALLISÉ POLYPROPYLÈNE MÉTALLISÉ POLYPROPYLÈNE MÉTALLISÉ POLYPROPYLÈNE MÉTALLISÉ POLYPROPYLÈNE MÉTALLISÉ POLYPROPYLÈNE MÉTALLISÉ	PP 44. PP 44 PP 44 PP 44 PP 44 PP 72 - PP 72 PP 73 - PP 74 - PP PP 76 PP 77 PP 78 PP 78 PP 78 PP 318 - PP 418 - PPS PP 316 - A - PPS 16 PRA PS • 1 to PS PS • 3 to PS
P 44 A2 P 44 A2 P 44 A P 744 A5 P 72 A-PP 72 R P 72 S P 73-PP 74-PP 75 P 78 A P 78 A P 78 S P 88 P 78 S P 88 P 78 I6 A-PPS 16 R RAHT S • 1 to PS • 2 • • 3 to PS • 4 64 [T]-R 64 S [T]	METALLIZED POLYPROPYLENE + FOILS	69 77 74-75 76 66 67 68 63 64 65 78-79 89 81 90 85	POLYPROPYLÈNE MÉTALLISÉ POLYPROPYLÈNE À ARMATURES POLYPROPYLÈNE À ARMATURES POLYPROPYLÈNE MÉTALLISÉ	PP 44/ PP 44 PP 44 PP 44 PP 44 PP 44 PP 45 PP 72 A-PP 72 PP 73-PP 74-PP PP 78 PP 78 PP 78 PP 78 PP 78 PP 18-PP 58 PP 16 A-PP 16 PP 58 PS 1 to PS PS 3 to PS R 64 (T)-R 64 S [
P 44 A2 P 44 A2 P 44 A R P 44 A R P 72 A - PP 72 R P 72 S - P 74 - PP 75 P 78 A P 78 B P 78 B P 78 B P 318 - PP 418 - PP 513 P 516 A - PP 516 R RAHT P 1 to PS * 2 P 5 * 3 to PS * 4 P 64 (T) - R 64 S (T) P 1 to PA * 2	METALLIZED POLYPROPYLENE + FOILS	69 77 74-75 76 66 67 68 63 64 65 78-79 89 81 90 85 86 22	POLYPROPYLÈNE MÉTALLISÉ POLYPROPYLÈNE AARMATURES POLYPROPYLÈNE A ARMATURES POLYPROPYLÈNE Á ARMATURES POLYPROPYLÈNE MÉTALLISÉ	PP 44 / PP 72 PP 72 PP 72 PP 72 PP 73 PP 74 PP 75 PP 76
P 20 P 44 A2 P 44 A2 P 44 R5 P 44 R5 P 72 A-PP 72 R P 72 S P 73 -PP 74-PP 75 P 78 A P 78 R P 78 S P 88 P 318-PP 418-PPS 13 PS 16 A-PPS 16 R RA HT S > 1 to PS • 2 S • 3 to PS • 4 64 (T)-R 64 S (T) A • 1 to RA • 2 A • 75	METALLIZED POLYPROPYLENE + FOILS	69 77 74-75 76 66 67 68 63 64 65 78-79 89 81 90 85	POLYPROPYLÈNE MÉTALLISÉ POLYPROPYLÈNE À ARMATURES POLYPROPYLÈNE À ARMATURES POLYPROPYLÈNE MÉTALLISÉ	PP 44/ PP 44 PP 44 PP 44 PP 44 PP 44 PP 72-PP 72 PP 73-PP 74-PP PP 78 PP 78 PP 78 PP 78 PP 78 PP 318-PP 418-PPS PP 316 A-PPS 16 PRA1 PS • 1 to PS PS • 3 to PS

GÉNÉRALITÉS

SUMMARY SOMMAIRE

METALLIZED POLYCARBONATE CAPACITORS METALLIZED P.C. and P.P.S. CAPACITORS	7	CONDENSATEURS POLYCARBONATE MÉTALLISÉ CONDENSATEURS P.C. et P.P.S MÉTALLISÉ
METALLIZED POLYESTER (P.E.T.) CAPACITORS METALLIZED POLYESTER (P.E.N.) CAPACITORS METALLIZED PLASTIC FILM CAPACITORS METALLIZED POLYESTER + FOIL CAPACITORS	27	CONDENSATEURS POLYESTER (P.E.T.) MÉTALLISÉ CONDENSATEURS POLYESTER (P.E.N.) MÉTALLISÉ CONDENSATEURS FILM PLASTIQUE MÉTALLISÉ CONDENSATEURS POLYESTER MÉTALLISÉ + ARMATURES
METALLIZED POLYPROPYLENE CAPACITORS POLYPROPYLENE FILM-FOIL CAPACITORS METALLIZED POLYPROPYLENE + FOIL CAPACITORS IMPULSE POLYPROPYLENE CAPACITORS HIGH VOLTAGE METALLIZED POLYPROPYLENE CAPACITORS	57	CONDENSATEURS POLYPROPYLÈNE MÉTALLISÉ CONDENSATEURS POLYPROPYLÈNE À ARMATURES MÉTALLIQUES CONDENSATEURS POLYPROPYLÈNE MÉTALLISÉ À ARMATURES CONDENSATEURS POLYPROPYLÈNE D'IMPULSIONS CONDENSATEURS POLYPROPYLÈNE MÉTALLISÉ HAUTE TENSION
POLYSTYRENE FILM-FOIL CAPACITORS	91	CONDENSATEURS POLYSTYRÈNE À ARMATURES DÉBORDANTES
HIGH VOLTAGE RECONSTITUTED MICA AND COMPOSITE EPOXY RESIN IMPREGNATED CAPACITORS	95	CONDENSATEURS HAUTE TENSION MICA RECONSTITUÉ ET COMPOSITE IMPRÉGNÉS RÉSINE ÉPOXY
TEFLON® FILM-FOIL CAPACITORS	107	CONDENSATEURS TÉFLON® À ARMATURES MÉTALLIQUES
IMPREGNATED CAPACITORS	109	CONDENSATEURS IMPRÉGNÉS
SILVERED MICA CAPACITORS	117	CONDENSATEURS AU MICA ARGENTÉ
HIGH VOLTAGE BLOCKS CAPACITORS FOR POWER ELECTRONICS	127	BLOCS HAUTE TENSION CONDENSATEURS POUR ÉLECTRONIQUE DE PUISSANCE

GENERAL INFORMATION GÉNÉRALITÉS

GENERAL INFORMATION GÉNÉRALITÉS

EXXELIA TECHNOLOGIES has more than 50 years experience in developing and manufacturing a wide range of capacitors for professional and industrial applications.

The capacitors included in this catalogue are manufactured in two plants owned by the company in **France**.

Our position as a market leader in many fields, is based on a comprehensive knowledge of the materials used and of the performance they can attain. The different technologies developed enable us to meet the users' needs. The capacitors manufactured by comply with the French and European standards and correspond to the requirements of many international standards.

This catalogue includes the following capacitors:

• Plastic Films

- Polycarbonate - P.P.S. - Polyester (P.E.T., P.E.N.)

- Polypropylene - Polystyrene - Teflon®

Mica

All descriptions, drawings and other data, including dimensions, materials and performance are supplied in this catalogue with the strictest possible accuracy. Nevertheless, the data provided is to be considered as general information and can under no circumstances involve **EXXELIA TECHNOLOGIES**'s liability unless a written agreement has been concluded.

All mechanical and electrical characteristics may vary within reasonable limits depending on the performance of the materials used and on rated manufacturing tolerances.

METALLIZED FILM CAPACITORS AND FILM-FOIL CAPACITORS

EXXELIA TECHNOLOGIES film capacitors are obtained by winding two or more layers of dielectric film and electrodes.

The electrodes are applied by evaporation under vacuum on the dielectric [metallized film capacitors] or consist of separate metal foils [film-foil capacitors].

Generally, the turns of each of the metal foils are interconnected by a deposit of several metal alloy layers. The leads are connected by soldering or brazing.

The casing (wrapped, molded, tube or metal case) ensures adequate resistance to climatic, thermal and mechanical stress.

PROPERTIES OF DIELECTRIC FILMS

Polycarbonate

Thanks to low temperature coefficient, this dielectric is well adapted for manufacturing precision capacitors requiring high stability of the capacitance value in a wide temperature range. The dielectric losses are low and destinate the P.C. capacitors for A.C. voltage filtering, more specifically in the aeronautic applications for 400 Hz EMI/RFI filtering.

Note: Despite the obsolescence of this dielectric, **EXXELIA TECHNOLOGIES** continue to propose P.C. capacitors thanks to its important stock of raw material

Polyphenylene sulphide (P.P.S.)

This dielectric propose very low dielectric losses, high capacitante stability, low humidity sensitivity and wide temperature range. Ils high melting point allows manufacturing of precision capacitors or power capacitors for high temperature applications. SMD version capacitors are proposed according CECC 00802 standard soldering processer (vapour phase, convection, ...). P.P.S. is graduelly replacing the polycarbonate dielectric film.

Polyester (Polyethylene terephtalate, P.E.T.)

Capacitors with smaller dimensions can be manufactured due to the high dielectric constant and excellent electrical performance of this film. Metallized polyester capacitors have also outstanding self-healing properties.

Polyester (Polyethylene naphtalate, P.E.N.)

The electric properties are comparable with those of P.E.T. polyesters. The higher melting point of this film makes it suitable for use in surface-mounted capacitors. These capacitors accept the different SMD mounting modes specified by the CEC 00802 standard (vapour phase, convection...).

New dielectric

EXXELIA TECHNOLOGIES proposes a new capacitor technology based on a metallized plastic film with excellente self-healing properties. PHM 912 series are first capacitors in this technology offering high level of miniaturization in wide temperature range.

Polypropylene (P.P.

This film features very low dielectric losses, low dielectric absorption, high dielectric strength, very high insulating strength and a practically linear temperature coefficient in all temperature ranges.

 $\hbox{All these properties make this film suitable for the manufacturing of power electronics } \\$

EXXELIA TECHNOLOGIES bénéficie d'une expérience de plus de 50 ans dans le développement et la fabrication d'une gamme étendue de condensateurs à usage professionnel et industriel.

Les condensateurs présentés dans ce catalogue sont fabriqués en France.

La position de "leader" d'**EXXELIA TECHNOLOGIES** dans de nombreux domaines d'applications est basée sur une grande connaissance des matériaux utilisés et des performances qu'ils peuvent atteindre. Les différentes technologies développées permettent de répondre aux besoins des utilisateurs. Les condensateurs fabriqués par **EXXELIA TECHNOLOGIES** sont conformes aux normes françaises ou européennes et répondent également aux exigences de nombreuses normes internationales.

Ce catalogue présente les condensateurs à :

• Films plastique

- Polycarbonate - P.P.S. - Polyester (P.E.T., P.E.N.)

- Polypropylène - Polystyrène - Téflon®

Au mica

Toutes les descriptions, dessins et autres informations, incluant les dimensions, les matériaux et les performances, sont donnés dans ce catalogue avec la plus grande précision possible, mais sont à considérer comme des informations d'ordre général et ne peuvent en aucun cas engager la responsabilité d'EXXELIA TECHNOLOGIES, sauf dans le cas d'un accord écrit.

Toutes les caractéristiques mécaniques et électriques peuvent raisonnablement fluctuer en fonction des performances des matières premières utilisées et des tolérances normales de production.

CONDENSATEURS FILMS MÉTALLISÉS ET À ARMATURES

Les condensateurs films **EXXELIA TECHNOLOGIES** sont obtenus par bobinage de deux ou plusieurs films diélectriques et d'électrodes.

Les électrodes peuvent être déposées par évaporation sous vide sur le diélectrique (condensateurs films métallisés) ou être constituées de feuilles métalliques indépendantes (condensateurs films à armatures).

Généralement, les spires de chaque électrodes sont reliées entre elles par un dépôt de plusieurs couches d'alliages métalliques. Le raccordement des connexions de sorties est effectué par soudage ou par brasage.

L'encapsulation (enrobage, moulage, tube ou boîtier métallique) assure la tenue aux contraintes climatiques, thermiques et mécaniques.

PROPRIETES DES FILMS DIÉLECTRIQUES

Polycarbonate (P.C.)

Grâce au faible cœfficient de température, ce diélectrique est adapté pour la réalisation de condensateurs de précision demandant une grande stabilité de la capacité dans une large gamme de température. Les pertes diélectriques sont faibles et permettent l'utilisation de condensateurs en P.C. pour le filtrage en tension A.C. et plus particulièrement sur le réseau de bord aéronautique en 400 Hz.

Note : Malgré l'obsolescence de ce diélectrique, **EXXELIA TECHNOLOGIES** continue de proposer des condensateurs en P.C. grâce à ses importantes réserves de matière première.

Polyphénylène sulfide (P.P.S.)

Son point de fusion élevé permet de fabriquer des condensateurs de précision ou de filtrage pour applications en haute température. Ces condensateurs acceptent différents modes de report des CMS définis par la norme CECC 00802 (phase vapeur, convection...). Ce film remplace progressivement le polycarbonate

Polyester (Polytéréphtalate d'éthylène, P.E.T.)

La constante diélectrique élevée et les bonnes performances électriques de ce film permettent d'obtenir des condensateurs de faibles dimensions. D'autre part, les condensateurs à diélectrique P.E.T. métallisé ont d'excellentes propriétés d'autocicatrisation.

Polyester (Polynaphtalate d'éthylène, P.E.N.)

Les propriétés électriques sont proches de celles des polyester P.E.T. Le point de fusion plus élevé de ce film permet son utilisation dans les condensateurs destinés au montage en surface. Ceux-ci acceptent différents modes de report des CMS définis par la norme CECC 00802 (phase vapeur, convection E).

Nouveau diélectrique

EXXELIA TECHNOLÓGIES propose une nouvelle technologie de condensateurs à la base d'un film plastique métallisé haute température offrant d'excellentes propriétés d'autocicatrisation. La gamme PHM 912 est la prmière proposée dans cette technologie et se distingue par son niveau de miniaturisation dans une large gamme de température.

Polypropylène (P.P.)

Ce film est caractérisé par des pertes diélectriques très faibles, une faible absorption diélectrique, une rigidité diélectrique élevée, une très forte résistance d'isolement et un coefficient de température pratiquement linéaire dans toute la gamme de températures.

GENERAL INFORMATION GÉNÉRALITÉS GÉNÉRALITÉS

GENERAL INFORMATION GÉNÉRALITÉS

capacitors.

However, the operating temperature is limited to 110°C.

Polusturene (P.S.)

The principle features of polystyrene capacitors are low dielectric losses low dielectric absorption, a very good stability over time and a low negative temperature coefficient. These characteristics make it particularly suitable for precision capacitors, "time constant" and "filter" applications.

Reconstituted Mica

Various composite dielectrics (plastic + paper or reconstituted mica) are used for manufacturing high-voltage capacitors.

They are impregnated with solid thermo-setting resins such as epoxy, polyester or silicons.

This technology gives very high stability of mechanical and electrical characteristics with a temperature range of -55°C to $+125^{\circ}\text{C}$ or $+155^{\circ}\text{C}$ and even $+200^{\circ}\text{C}$ on request. Rated voltage is applicable for all temperature ranges indicated on the data sheet (HT 72 - HT 77 - HT 78 - HT 86 - HT 96 - HT 97).

Teflon® (P.T.F.E.)

This is the only film able to preserve its properties beginning from cryogenic temperature up to 200°C.

The loss angle tangent and the insulation resistance are stable versus temperature. These outstanding properties make it very suited for high-temperature applications. P.T.F.E. propose the lower dielectric absoption and very low leakage current even at 200°C.

The table below shows the main properties of the different film types mentioned

Toutes ces propriétés rendent ce film attractif pour la fabrication de condensateurs de précision ou de condensateurs destinés à l'électronique de puissance.

Toutefois, la température d'utilisation est limitée à 110°C.

Polystyrène (P.S.)

Les condensateurs au polystyrène sont caractérisés par d'excellentes propriétés : tangente de l'angle de pertes, absorption diélectrique, coefficient de température, stabilité à long terme. Ces caractéristiques les destinent plus particulièrement aux condensateurs de précision, mais également aux applications "constante de temps" et "filtres".

Mica reconstitué

Divers diélectriques composites (plastique + papier ou mica reconstitué) sont utilisés pour réaliser ces condensateurs haute tension. Ils sont imprégnés avec des résines solides thermodurcissables telles que époxy, polyester ou silicone.

Ces technologies permettent d'obtenir une très grande stabilité des propriétés mécaniques et électriques dans une gamme de températures de -55° C à $+125^{\circ}$ C ou $+155^{\circ}$ C et même, $+200^{\circ}$ C sur demande.

La tension nominale est applicable dans toute la gamme de températures de la feuille particulière (HT 72 - HT 77 - HT 78 - HT 96 - HT 97).

Téflon® (P.T.F.E.

Ce film est le seul capable de garder ses caractéristiques à partir des températures cryogéniques jusqu'à 200°C.

La tangente de l'angle de pertes et la résistance d'isolement sont stables avec la température propose la plus faible absorption diélectrique.

Ces excellentes caractéristiques le destinent aux applications cryogéniques ou haute température.

Le tableau ci-dessous donne les principales caractéristiques des différents films mentionnés

Dielectric		Dielectric constant (εr)	Temperature range	Dissipation factor [Tg δ]	Dielectric absorption (23°C)		Dielectric
Polycarbonate	P.C.	2,8	−55°C +125°C	15.10-4	0,05 %	P.C.	Polycarbonate
Polyphenylene sulphide	P.P.S.	3	−55°C +125°C/155°C*	6.10-4 0,02 %		P.P.S.	Polyphénylène sulfide
Polyester Polyethylene terephtalate	P.E.T.	3,3	−55°C +125°C	5°C 50.10 ⁻⁴ 0,2 %		P.E.T.	Polyester Polytéréphtalate d'éthylène
Polyester Polyethylene naphtalate	P.E.N.	3	-55°C +125°C/155°C	5°C/155°C 40.10 ⁻⁴ P.E.N.		Polyester Polynaphtalate d'éthylène	
Polypropylene	P.P.	2,2	-55°C + 085°C/110°C*	2.10-4	0,01 %	P.P.	Polypropylène
Polystyrene	P.S.	2,5	−55°C +85°C	5.10-4	0,001 %	P.S.	Polyphénylène sulfide
Reconstituted Mica		6	−55°C +155°C	20.10-4	0,01 %		Mica reconstitué
Teflon®	P.T.F.E.	2	−55°C + 200°C	5.10-4	0,006 %	P.T.F.E.	Téflon®
Dielectrique		Constante diélect. (εr)	Gamme de températures	Tangente de l'angle de pertes (Tg δ)	Absorption diélect. (23°C)		Diélectrique

^{*} Extended range on request * Gamme étendue sur demande

PROPERTIES OF METALLIZED FILMS CAPACITORS

The metallized film consists of an extremely thin layer (some hundredts μ m) of zinc or aluminium deposited by evaporation under vacuum on the dielectric.

The nature, thickness and geometry of the metallized layer modify the properties of the capacitors, especially as far as permissible peak or effective current are concerned.

Metallized film capacitors are smaller than film-foil capacitors.

Self-healing is a fundamental property of these capacitors. When a dielectric breakdown occurs between the metal layers, due to a dielectric failure, an electrical arc causes local vapour-deposition of the metallization which results in an insulating metallic oxide. Thus regenerated, the capacitor is once again operational.

The self-healing operations may be multiple (see French standards ${\tt UTE~C~83~151}$ and ${\tt NF~C~83~153}$. Self-healing and properties).

PROPERTIES OF FILM-FOIL CAPACITORS

Film-foil capacitors are especially recommended to meet high current and/or power stresses.

The thickness of the metal foil enables the reduction of the series resistance and improves the general performance of the capacitors in high current capability.

These improvements are made to the detriment of the volume of the capacitor which, also looses its self-healing properties.

Composite dielectrics combine films of different types with complementary specific characteristics.

In high voltage and power electronics applications, these capacitors are usually impregnated with impregnating fluids or solid substances.

PROPRIETES DES CONDENSATEURS FILMS MÉTALLISÉS

La métallisation est constituée d'une couche extrêmement fine (quelques centièmes de µm) de zinc ou d'aluminium déposée par évaporation sous vide sur le diélectrique. La nature, l'épaisseur et la géométrie de la métallisation modifient les caractéristiques des condensateurs, en particulier au niveau du courant crête ou efficace admissible. Les condensateurs films métallisés ont un encombrement inférieur aux condensateurs films à armatures.

L'autocicatrisation est une propriété essentielle de ces condensateurs. Lorsqu'un amorçage se produit entre les armatures, dû à un défaut du diélectrique, l'arc électrique provoque la vaporisation locale de la métallisation en formant un oxyde métallique isolant. Le condensateur ainsi régénéré redevient opérationnel.

Les autocicatrisations peuvent être multiples (voir normes **UTE C 83151** et **NF C 83153**. Autocicatrisations et caractéristiques).

PROPRIETES DES CONDENSATEURS FILMS A ARMATURES

Les condensateurs films à armatures sont particulièrement recommandés pour répondre à des contraintes élevées de courant et/ou de puissance.

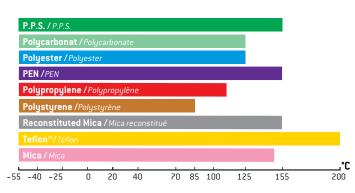
Une forte épaisseur des armatures permet de diminuer la résistance série et d'améliorer les performances générales des condensateurs.

Ces améliorations se font au détriment du volume du condensateur qui, de plus, perdra ses propriétés d'autocicatrisation.

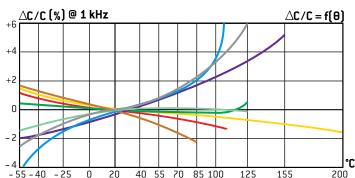
Les diélectriques composites associent des films de natures différentes dont les caractéristiques spécifiques se complètent.

Pour les applications haute tension et électronique de puissance, ces condensateurs sont généralement imprégnés avec des imprégnants liquides ou solides.

GENERAL INFORMATION GÉNÉRALITÉS


sont données par la figure 1.

GENERAL INFORMATION GÉNÉRALITÉS

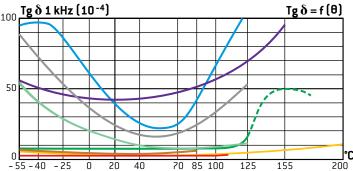

CAPACITOR PERFORMANCE VERSUS TEMPERATURE

The capacitors' performance versus temperature essentially depends upon the dielectric type. Figure 1 shows ranges of operating temperatures.

Important differences affect the laws governing the changes of the main electrical characteristics. They are highlighted by the following curves:

Fig. 1 : Ranges of operating temperatures *Gammes de températures d'utilisation*

COMPORTEMENT DES CONDENSATEURS EN FONCTION DE LA TEMPERATURE


Le comportement des condensateurs en fonction de la température dépend

essentiellement de la nature du diélectrique. Les gammes de températures d'utilisation

Des différences importantes affectent les lois de variations des principaux paramètres

électriques et sont mises en évidence sur les courbes suivantes :

Fig. 2 : Capacitance drift versus temperature Variation de la capacité en fonction de la température

Fig. 3 : Loss angle change versus temperature

Variation de la tangente de l'angle de pertes en fonction de la température

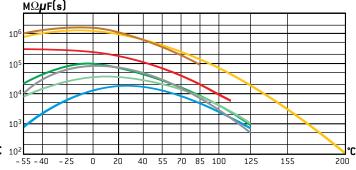


Fig. 4 : Insulation resistance change versus temperature

Variation de la résistance d'isolement en fonction de la température

CAPACITOR PERFORMANCE VS. FREQUENCY

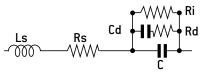
A real capacitor may be represented by the diagram below:

Ls Series inductance

Rs Resistance of metal foil and connections

Ri Insulation resistance

Cd Dielectric absorption


Rd Resistance equivalent to the dielectric losses

C Capacitance

The resistive terms generate temperature rises when the capacitors carry A.C. current (I_{RA}). Depending on the frequency range, they may be more or less preponderant. The equivalent ESR series resistance is the sum of these terms:

When frequency increases, the term 1/Ri C² ² becomes rapidly negligible.

The metal foil and the connections are designed to obtain a resistance value (Rs) as low as possible. This value is dependent on the capacitors technology and geometry. Inductance Ls also disturbs the operation of the capacitors at high frequencies. Impedance Z is stated as follows: When frequency increases, the effect of Ls will gradually nullify the capacitance component of the capacitors until it reaches the resonance frequency where Z = Rs and LC 2 = 1

 $\begin{aligned} \text{ESR} &= \text{Rs} + \text{Tg } \delta / \text{C} \omega + 1 / \text{Ri } \text{C}^2 \omega^2 \\ &\text{ou Tg } \delta = \text{Rd } \text{C} \omega \\ &\text{et } \omega = 2 \, \pi \, \text{f} \end{aligned}$

 $\mathsf{ESR} = \mathsf{Rs} + \mathsf{Tg}\,\delta\,/\mathsf{C}\omega$

 $Z = \sqrt{Rs^2 + (Ls.\omega - 1/C.\omega)^2}$

COMPORTEMENT DES CONDENSATEURS EN FONCTION DE LA FRÉQUENCE

Un condensateur réel peut être représenté par le schéma ci-dessous :

Ls Inductance série

Rs Résistance des armatures et des liaisons

Ri Résistance d'isolement

Cd Absorption du diélectrique

Rd Résistance équivalente aux pertes du diélectrique

C Capacité

Les termes résistifs sont à l'origine des échauffements lorsque les condensateurs sont parcourus par un courant efficace $\{I_{RA}\}$. Selon la gamme de fréquences F, ils peuvent être plus ou moins prépondérants. La résistance série équivalente ESR est la somme de tous ces termes :

Lorsque la fréquence augmente, le terme 1/Ri C² ² devient rapidement négligeable.

Les armatures et les liaisons doivent être conçues pour obtenir une résistance (Rs) aussi faible que possible. De plus, celle-ci dépend de la technologie et de la géométrie du condensateur. L'inductance Ls perturbe également le fonctionnement des condensateurs à des fréquences élevées. L'impédance Z s'écrit : Lorsque la fréquence augmente, l'influence de Ls se traduira par une annulation progressive de la composante capacitive des condensateurs jusqu'à la fréquence de résonance où Z = Rs et LC ² = 1

SUMMARYSOMMAIRE

General information on P.C. and P.P.S. capacitors 8-9-10 Généralités sur les condensateurs P.C. et P.P.S. 8-9-10 P.C. and P.P.S. capacitors data sheets 11 Feuilles particulières des condensateurs P.C. et P.P.S. 11

METALLIZED P.C. and P.P.S. CAPACITORS			CONDENSATEURS P.C. et	P.P.S. MÉTALLISÉ
Commercial type Appellation commerciale	Standard reference Modèle normalisé	Capacitance Capacité	Rated voltage U _{RC} Tension nominale Ü _{RC}	Page Page
KM 501 (T)	CKM 501	1000 pF - 22,1 μF	40 V - 630 V	11
KM 511 (T)	CKM 511	1000 pF - 22,1 μF	40 V - 630 V	11
KM 521 (T)	CKM 521	1000 pF - 22,1 μF	40 V - 630 V	11
KM 531 (T)	CKM 531	1000 pF - 22,1 μF	40 V - 630 V	11
KM 50 (T)	CKM 50	1000 pF - 22,1 μF	40 V - 630 V	11
KM 51 (T)	CKM 51	1000 pF - 22,1 <i>μ</i> F	40 V - 630 V	11
KM 52 (T)	CKM 52	1000 pF - 22,1 μF	40 V - 630 V	11
KM 53 (T)	CKM 53	1000 pF - 22,1 μF	40 V - 630 V	11
KM 601 (T)	CKM 601	1000 pF - 22,1 μF	40 V - 630 V	11
KM 611 (T)	CKM 611	1000 pF - 22,1 <i>μ</i> F	40 V - 630 V	11
KM 621 (T)	CKM 621	1000 pF - 22,1 <i>μ</i> F	40 V - 630 V	11
KM 631 (T)	CKM 631	1000 pF - 22,1 <i>μ</i> F	40 V - 630 V	11
KM 60 (T)	CKM 60	1000 pF - 22,1 μF	40 V - 630 V	11
KM 61 (T)	CKM 61	1000 pF - 22,1 μF	40 V - 630 V	11
KM 62 (T)	CKM 62	1000 pF - 22,1 μF	40 V - 630 V	11
KM 63 (T)	CKM 63	1000 pF - 22,1 μF	40 V - 630 V	11
KM 111 (T)	CKM 111	1000 pF - 10 μF	40 V - 400 V	12
KM 311 (T)	CKM 311	1000 pF - 22 μF	40 V - 630 V	13
KM 21 (T)	CKM 21	1000 pF - 22 μF	40 V - 630 V	13
KM 31 (T)	CKM 31	1000 pF - 22 μF	40 V - 630 V	13
KM 41 (T)	CKM 41	1000 pF - 22 μF	40 V - 630 V	13
KM 78 (T)		1000 pF - 0,47 μF	50 V - 63 V	13
KM 78 R (T)		1000 pF - 1 μF	40 V - 63 V	14
KM 82 R (T)		1000 pF - 1 μF	40 V - 63 V	14
KM 78 RS		1000 pF - 1 μF	40 V - 63 V	14
KM 82 RS		1000 pF - 1 μF	40 V - 63 V	14
KM 82 (T)		1000 pF - 1 μF	40 V	14
KM 90 (T)		1000 pF - 1 μF	50 V - 100 V	15
KM 94		4,7 nF - 1,2 μF	40 V - 100 V	16
KM 97 (T)		0,22 μF - 10 μF	120 V - 208 V *	17
PMR 64 (T)		470 pF - 22 μF	40 V - 630 V	18
PMA 64 (T)		470 pF - 22 μF	40 V - 630 V	18
PM 67 (T)		1000 pF - 0,1 μF	63 V - 250 V	19
PM 72 (T)		1000 pF - 15 μF	40 V - 160 V	19
PMR 4 (T)		1000 pF - 22 μF	40 V - 630 V	20
A 64 S 4 (T)		1000 pF - 2,2 μF	160 V	21
A 74 S 4 (T)		1000 pF - 33 μF	40 V - 630 V	21
KM 711	CKM 711	1000 pF - 22 μF	40 V - 630 V	22
KM 7	CKM 7	1000 pF - 22 μF	40 V - 630 V	22
R 64 (T)		1000 pF - 10 μF	40 V - 630 V	22
A 64 S (T)		1000 pF - 10 μF	40 V - 630 V	22
R 64 S (T)		1000 pF - 10 μF	40 V - 630 V	22
A 64 S (T)		1000 pF - 10 μF	40 V - 630 V	22
MK 12 (T)		10 nF - 10 μF	63 V - 400 V	23
K1PE T		0,01 μF - 3,3 μF	400 V - 630 V	24
KCP 4 UA T		7,5 nF - 77,7 nF	630 V - 1000 V	25
KSP 4 UA T		0,01 μF - 0,2 μF	400 V - 1500 V	26
P.P.S. FILM-FOIL CAPACITORS			CONDENSATEURS P.F	P.S. À ARMATURES
EK 8		100 pF - 10 nF	100 V - 250 V	23

* Rated voltage U_{RA}

* Tension de service U_{RA}

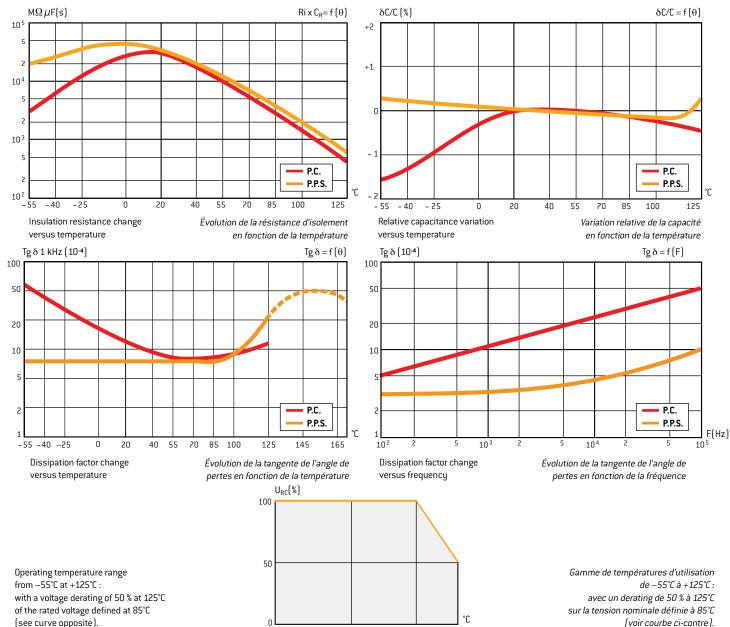
GENERAL INFORMATION

GÉNÉRALITÉS

COMPARISON OF THE CHARACTERISTICS BETWEEN POLYPHENYLENE SULFIDE (P.P.S.) AND POLYCARBONATE (P.C.)

P.P.S. and Polycarbonate capacitors are used in electronic circuits for professional applications.

They meet severe technical requirements and have excellent properties:


- capacitance stability
- insulation resistance
- frequency performance
- Dissipation factor
- temperature coefficient
- dielectric constant

COMPARAISON DES CARACTÉRISTIQUES ENTRE LE POLYPHÉNYLÈNE SULFIDE (P.P.S.) ET LE POLYCARBONATE (P.C.)

Les condensateurs au polycarbonate et P.P.S. sont utilisés dans les circuits électroniques professionnels.

lls répondent aux exigences techniques les plus sévères et se caractérisent par d'excellentes propriétés :

- stabilité de la capacité
- résistance d'isolement
- comportement en fréquence
- tangente de l'angle de pertes
- coefficient de température
- constante diélectrique

(see curve opposite).

High stability and a low temperature coefficient allow the manufacturing of precision capacitors having a capacitance tolerances of up to ± 1 %.

The dissipation factor and its performance versus frequency provide the excellent performance necessary, for high-performance filters.

These components are also recommended for use in RC circuits due to their low insulation resistance change versus temperature.

La stabilité et le faible coefficient de température permettent de réaliser des condensateurs de précision avec des tolérances de capacité jusqu'à $\pm 1\,\%$.

La tangente de l'angle de pertes et son comportement en fréquence assurent d'excellentes performances en fréquence permettant, par exemple, l'utilisation dans des filtres à haut rendement.

L'emploi de ces composants est également conseillé dans les circuits RC en raison de la faible variation de la résistance d'isolement avec la température.

R Tel: + 33 (0)1 49 23 10 00 www.exxelia.com - info@exxelia.com Page revised - Version 04/15

125

GENERAL INFORMATION

GÉNÉRALITÉS

Because of the high performance they offer, polycarbonate capacitors are used in professional electronic circuits. Polycarbonate technologies meet the most stringent technical requirements.

Polycarbonate capacitors are especially used for precision applications, high performance filters and in RC circuits.

This document will show that P.P.S. is able to replace PC in its overall applications, thanks to its excellent characteristics.

En raison de leurs performances, les condensateurs au polycarbonate sont utilisés dans les circuits électroniques professionnels. Les technologies polycarbonate répondent aux exigences techniques les plus sévères.

Les condensateurs en polycarbonate sont particulièrement appréciés dans les applications de précision, les filtres à haut rendement et les circuits RC.

Le but de ce document est de montrer que le P.P.S., grâce à ses excellentes caractéristiques, sera à même de remplacer le PC dans toutes ses applications.

VDICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS		CAF	RACTERISTIQUES 1	TYPIQUES
	P.C.	P.P.S.	Units / Unités	
Density	1.2	1.35	g/cm ³	Densité
Melting point	230	285	°C	Température de fusion
Glass transition temperature	140	92	°C	Température de transition vitreuse
Dielectric constant (1kHz)	3	3.1		Constante diélectrique (1kHz)
Dissipation factor (1kHz)	0.1 – 0.3	0.06	%	Tangente de l'angle de perte (1kHz)
Breakdown strength	230	250	kV/mm	Rigidité diélectrique
Resistivity	1 x 1017	5 x 1017	Ω x cm	Résistivité
Moisture absorption	0.2	0.05	%	Absorption d'humidité
Long term service temperature	130	160	°C	Température de fonctionnement
Maximum operating temperature	140	180	°C	Température max admissible

These values are typical values and are applicable to the film itself. The resulting wounded capacitor may have slightly different characteristics.

Ces valeurs sont des valeurs typiques applicables au film lui-même. Les caractéristiques du produit final peuvent être sensiblement différentes.

CONCLUSION

Electrical characteristics of P.P.S. are very close to those of PC, even better in some cases. EXXELIA TECHNOLOGIES already developed many products and ranges in P.P.S. thanks to its strength knowledge of that technology. In addition, P.P.S. performances have been confirmed by comparative qualification tests, according to PC standards.

Moreover, thanks to identical dimensions, an excellent stability in temperature and a good behavior at high frequencies, P.P.S. is the best alternative to PC.

To conclude, P.P.S. is fully compliant with PC in all its applications, including for most demanding uses:

- precision capacitors (down to 1%),
- high stability applications,
- AC applications (including at low frequencies),
- use in the overall PC temperature range.

Denomination of substitution ranges with P.P.S. dielectric:

When a capacitor is found to be unavailable because of the lack of Polycarbonate film, it can be replaced by an equivalent one, from a replacement range in P.P.S.

The substitution ranges in P.P.S. dielectric fulfill the requirements of Polycarbonate capacitors reference standards.

The replacement range in P.P.S. will be called like the corresponding range in Polycarbonate, followed by the suffix "T".

Example:

Original range in Polycarbonate KM 501 MK 12

Replacement range in P.P.S. KM 501 T

MK 12 T

CONCLUSION

Les caractéristiques électriques du P.P.S. sont donc très proches de celles du PC, voire meilleures dans certains cas. Ayant la maîtrise de la technologie P.P.S., EXXELIA TECHNOLOGIES a déjà développé de nombreux produits et gammes. Par ailleurs, des essais de qualification comparatifs ont confirmé les performances des condensateurs en P.P.S. et leur conformité aux normes du PC.

De plus, un encombrement identique, une excellente stabilité en température et un bon comportement à hautes fréquences font du P.P.S. le meilleur remplaçant pour le PC. En conclusion, le P.P.S. peut directement remplacer le PC dans toutes ses applications, y compris pour les utilisations les plus exigeantes :

- condensateurs de précision (jusqu'à 1%),
- applications haute stabilité,
- utilisation en tension alternative (y compris basses fréquences),
- utilisation dans toute la gamme de température du PC.

Appellation des gammes de substitution en P.P.S.

Lorsqu'un condensateur en polycarbonate ne pourra plus être fabriqué pour cause de pénurie de film, il pourra être remplacé par un condensateur équivalent provenant d'une gamme de remplacement en P.P.S..

Les gammes de substitution en P.P.S. répondent aux exigences des normes de référence des condensateurs en Polycarbonate

La gamme de remplacement en P.P.S. portera le nom de la gamme correspondante en Polycarbonate, suivi du suffixe « T ».

Exemple:

Gamme d'origine en Polycarbonate KM 501 MK 12

Gamme de remplacement en P.P.S. KM 501 T

MK 12 T

METALLIZED P.C. AND P.P.S. CAPACITORS

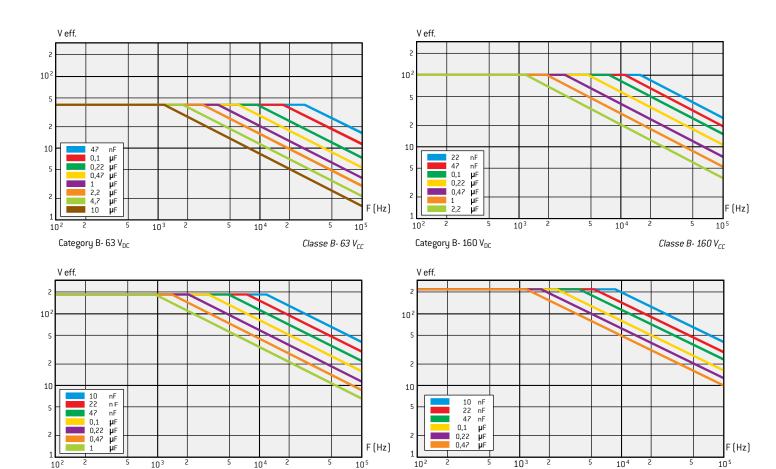
CONDENSATEURS P.C. ET P.P.S. MÉTALLISÉ

CONDENSATEURS P.C. ET P.P.S. MÉTALLISÉ

GENERAL INFORMATION *GÉNÉRALITÉS*

Permissible A.C. voltage

The table given below shows the relation between D.C. rated voltage U_{RC} and A.C. sinewave voltage at 50 Hz $U_{\rm RA}$:


U _{RC} (V _{CC})	63	160	250	400
U _{RA} (V _{CA})	30	100	200	220

Tension efficace admissible

Le tableau ci-dessous donne la correspondance entre la tension nominale continue U_{RC} et la tension alternative efficace sinusoïdale à 50 Hz U_{RA} :

Metallized polycarbonate technology is perfectly suitable for all types of applications whose permissible A.C. voltage limits in relation to frequency and to capacitance are shown in the diagram below.

La technologie polycarbonate métallisé convient parfaitement à toutes les utilisations dont les limites des tensions efficaces, admissibles en fonction de la fréquence et de la capacité, sont indiquées par les courbes ci-dessous.

The rated voltage values given comply with Class B specifications of the **NF C 83153** standard.

Les tensions nominales indiquées correspondent à la classe B de la spécification **NF C 83153**.

Non-sinewave signals

Category B- 250 V_{DC}

 $\label{thm:metallized} \mbox{Metallized polycarbonate dielectric capacitors are unable to accept signals whose pulse rise time dV/dt exceed certain limits.}$

These are in function of the capacitor geometry and of the dielectric thickness, and hence, of the rated voltage. The limits in $V/\mu s$ are given in the table opposite :

Signaux non sinusoïdaux

Category B- 400 V_{DC}

Les condensateurs à diélectrique polycarbonate métallisé ne peuvent accepter des signaux dont les variations de tension dV/dt dépassent certaines limites.

Celles-ci sont fonction de la géométrie du condensateur et de l'épaisseur du diélectrique, donc de la tension nominale. Les limites, en V/µs sont indiquées dans le tableau ci-contre:

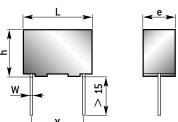
For operating peak voltages inferior to the rated voltage (Up. to p. < U_{RC}) the given dV/dt values may be multiplied by U_{RC} / Up. to p.

	LEAD SPAC	PACING (mm) ENTRAXE							
U _{RC}	5,08	7,62	10,16	15,24	22,86	27,94			
40 V	12	5							
63 V	25	10	8	5	3	2			
100 V	30	20	12	8	5	3			
250 V	40	30	20	12	8	5			
400 V	50	40	30	20	10	8			

Classe B- 250 V_{CC}

Pour les tensions d'utilisation crête à crête inférieures à la tension nominale $\{Uc \ a \ c < U_{RC} \ \}$, les valeurs de dV/dt indiquées peuvent être multipliées par le facteur $U_{RC}/Uc \ a \ c$.

Classe B- 400 V_{CC}


KM 501 (T) KM 50 (T) KM 601 (T) KM 60 (T)

Radial leads Models CKM 501 (T) CKM 50 (T) to NF C 83 153 standard (CECC 30 500) (except Toption)

Modèles CKM 501 (T) CKM 50 (T)

Sorties radiales Axial leads Models CKM 601 (T) CKM 60 (T) de la norme NF C 83 153 to ex CCTU 02-14 A standard (sauf option T) (except T option)

Sorties axiales Modèles CKM 601 (T) CKM 60 (T) de l'ex-norme CCTU 02-14 A (sauf option T)

> 25

DIELECTRIC

Metallized polycarbonate. Metallized P.P.S. (Toption) for new design.

TECHNOLOGY

Self-healing, non-inductive. Epoxy resin molded.

MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

Polycarbonate métallisé. P.P.S. métallisé (option T) pour nouvelles études.

TECHNOLOGIE

Autocicatrisable, non inductif. Moulé résine époxy.

MARQUAGE

modèle capacité tolérance tension nominale date-code

GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Climatic category		55/125/56		Catégorie climatique
D. F. Tg δ at 1 kHz	for $C_R \le 1 \mu F$	≤ 20.10 ⁻⁴	pour $C_R \le 1 \mu F$	Tg δ à 1 kHz
	for $C_R > 1 \mu F$	≤ 30.10 ⁻⁴	pour C _R > 1 μ F	
Insulation resistance	for $C_R \leq 0,22 \mu F$	≥ 50000 MΩ	pour C _R ≤ 0,22 <i>μ</i> F	Résistance d'isolement
	for $C_R \le 0.22 \mu F$	≥ 10000 MΩ. µ F	pour C _R ≤ 0,22 <i>μ</i> F	
Test voltage		1,6 U _{RC}		Tension de tenue
Insulation between leads and case		≥ 50000 MΩ		Isolement entre bornes réunies et masse

ALTERNATIVE MODELS				MODÈLES ASSOCIÉS
Climatic category	55/125/21	40/085/56	40/085/21	Catégorie climatique
Radial leads	KM 511 (T) KM 51 (T)	KM 521 (T) KM 52 (T)	KM 531 (T) KM 53 (T)	Sorties radiales
Axial leads	KM 61 (T) KM 61 (T)	KM 621 (T) KM 62 (T)	KM 631 (T) KM 63 (T)	Sorties axiales

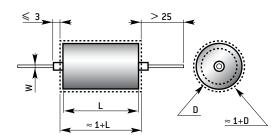
L 11	h				63	V	10	3 V O V	25	0 V 0 V	25 40	0 V	63	0 V 0 V
11					C _R min	C _R max								
	*9,5	*5	7,62	0,6							3 400 pF	8 250 pF	1000 pF	3 320 pF
14	8	5	10,16	0,6	48 700 pF	0,1 <i>μ</i> F	22 600 pF	47 500 pF	10 000 pF	22 100 pF	8 450 pF	10 000 pF	3 400 pF	4 750 pf
14	11	6,5	10,16	0,6	0,102 μF	0,221 μF	48 700 pF	0,1 μF	22 600 pF	47 500 pF	10 200 pF	22 100 pF	4 870 pF	10 000 pl
18	11	6,5	15,24	0,8	0,226 μF	0,475 μF	0,102 μF	0,221 μF	48 700 pF	0,1 <i>μ</i> F	22 600 pF	47 500 pF	10 200 pF	22 100 pf
18	12	8	15,24	0,8	0,487 μF	1 μF	0,226 μF	0,475 μF	0,102 μF	0,221 μF	48 700 pF	0,1 μF	22 600 pF	47 500 pl
18	16	9,5	15,24	0,8	1,02 μF	1,5 μF	0,487 μF	0,681 μF	0,226 μF	0,332 μF	0,102 μF	0,15 μF	48 700 pF	68 100 pl
18	16	10	15,24	0,8	1,54 μF	2,21 μF	0,698 μF	1 μF	0,34 μF	0,475 μF	0,154 μF	0,221 μF	69 800 pF	0,1 μ
32	15	9	27,94	1	2,26 μF	3,32 μF	1,02 μF	1,5 μF	0,487 μF	0,681 μF	0,226 μF	0,332 μF	0,102 μF	0,15 μI
32	16	10	27,94	1	3,4 μF	4,75 μF	1,54 μF	2,21 μF	0,698 μF	1 μF	0,34 μF	0,475 μF	0,154 μF	0,221 μΙ
32	18	12	27,94	1	4,87 μF	6,81 µF	2,26 μF	3,32 μF	1,02 μF	1,5 μF	0,487 μF	0,681 μF	0,226 μF	0,332 μΙ
32	21	13,5	27,94	1	6,98 μF	10 μF	3,4 μF	4,75 μF	1,54 μF	2,21 μF	0,698 μF	1 μF	0,34 μF	0,475 μI
32	26	16	27,94	1	10,2 μF	15 μF	4,87 μF	6,81 μF	2,26 μF	3,32 μF	1,02 μF	1,5 μF	0,487 μF	0,681 μ
32	29	20	27,94	1	15,4 μF	22,1 μF	6,98 μF	10 μF	3,4 μF	4,75 μF	1,54 μF	2,21 μF	0,698 μF	1 μl

Capacitance tolerances / Tolérances sur capacité Tolerances on dimensions Tolérances dimensionnelles

* For models with axial leads : h = 8 - e = 5,5* Pour les modèles à sorties axiales : h = 8 - e = 5,5

HOW TO ORDER							EXEMPLE DE CODIFICA	TION À LA COMMANDE
Model	A,B,C : Class	T: P.P.S option	EFCO: Option	W: RoHS	D,S,F: Quality level	Capacitance	Capa. tolerance	Rated voltage (V _{DC})
KM 501	-	_	-	_	_	0,1 µ F	± 1%	160 V
Modèle	A,B,C : Classe	T: Option P.P.S.	EFCO : Option	W: RoHS	D,S,F: Niveau de qualité	Capacité	Tol. sur capa.	Tension nom. (V _{CC})

KM 111 (T)


RoHS = W

Axial leads Soil Models CKM 111 (T) Modèles

to NF C 83 153 standard (CECC 30 500) [except T option]

Sorties axiales Modèles CKM 111 (T) de la norme NF C 83 153 (sauf option T)

DIELECTRIC

Metallized polycarbonate. Metallized P.P.S. (T option) for new design.

TECHNOLOGY

Self-healing, non-inductive. Metal case, non magnetic. Glass sealed. Insulating sleeve.

MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

Polycarbonate métallisé. P.P.S. métallisé (option T) pour nouvelles conceptions.

TECHNOLOGIE

Autocicatrisable, non inductif. Tube métal, non magnétique. Obturé perles de verre. Protection par gaine isolante.

MARQUAGE

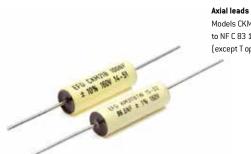
modèle capacité tolérance tension nominale date-code

* Pour les modèles à sorties axiales : h = 8 - e = 5,5

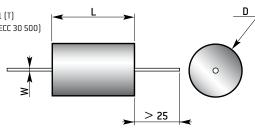
GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Climatic category		55/125/56		Catégorie climatique
Operating temperature		-55°C +125°C		Température d'utilisation
D. F. Tg δ at 1 kHz	for $C_R \le 1 \mu F$	≤ 20.10 ⁻⁴	pour $C_R \le 1 \mu F$	Tgδà1kHz
	for C _R > 1 μF	≤ 30.10 ⁻⁴	pour C _R > 1 μ F	
Insulation resistance	for $C_R \le 0.22 \mu\text{F}$	≥ 30000 MΩ	pour C _R ≤ 0,22 <i>μ</i> F	Résistance d'isolement
	for $C_R \le 0.22 \mu\text{F}$	≥ 10000 MΩ. µ F	pour C _R ≤ 0,22 <i>μ</i> F	
Test voltage		1,6 U _{RC}		Tension de tenue
Insulation between leads and case		≥ 50000 MΩ		Isolement entre bornes réunies et masse

imensions (r	mm) classe	A ou B		V		3 V		0 V	25	0 V	400 V	
	D	W	C _R min	C _R max								
15	6	0,6							3 700 pF	8 250 pF	1000 pF	3 650 pF
18	6	0,6	68 000 pF	0,115 μF	25 800 pF	53 600 pF	11 700 pF	25 500 pF	8 350 pF	11 500 pF	3 700 pF	5 360 pF
18	8	0,6	0,117 <i>μ</i> F	0,255 μF	54 200 pF	0,115 μF	25 800 pF	53 600 pF	11 700 pF	25 500 pF	5 420 pF	11 500 pF
22	8	0,8	0,258 <i>μ</i> F	0,536 <i>μ</i> F	0,117 μF	0,255 μF	54 200 pF	0,115 μF	25 800 pF	53 600 pF	11 700 pF	25 500 pF
22	10,5	0,8	0,542 <i>μ</i> F	1,15 μF	0,258 μF	0,536 μF	0,117 μF	0,255 μF	54 200 pF	0,115 μF	25 800 pF	53 600 pF
22	12,7	0,8	1,17 μF	2,55 μF	0,542 μF	1,15 μF	0,258 μF	0,536 μF	0,117 μF	0,223 μF	54 200 pF	0,115 μF
34	12,7	1	2,58 <i>μ</i> F	3,74 μF	1,17 μF	2,55 μF	0,542 μF	1,15 μF	0,226 μF	0,512 μF	0,117 μF	0,255 μF
34	14,3	1	3,79 μF	5,36 μF	2,58 μF	3,74 μF						
34	16,5	1	5,42 μF	10 μF	3,79 μF	5,36 μF						

± 20% - ± 10% - ± 5% - ± 2% - ± 1%


* For models with axial leads : h = 8 - e = 5,5

Tolerances on dimensions Capacitance tolerances / Tolérances sur capacité Tolérances dimensionnelles


HOW TO ORDER	HOW TO ORDER EXEMPLE DE CODIFICATION A LA COMMANDE									
Model	A,B: Class	T: P.P.S option	W:RoHS	S,F: Quality level	Capacitance	Capa. tolerance	Rated voltage (V _{DC})	Lev B/C/EM : Space use		
KM 111	_	_	_	-	1000 μF	± 10%	400 V	_		
Modèle	A,B : Classe	T: Option P.P.S.	W : RoHS	S,F: Niveau de qualité	Capacité	Tol. sur capa.	Tension nom. (V _{CC})	CECC+: Other reliability level		

KM 311 (T) - KM 21 (T)

RoHS = W

Axial leads
Models CKM 311 (T) CKM 21 (T)
to NF C 83 153 standard (CECC 30 500)
(except T option)

Sorties axiales

Modèles CKM 311 (T) CKM 21 (T) de la norme NF C 83 153 (sauf option T)

DIELECTRIC

Metallized polycarbonate. Metallized P.P.S. (T option) for new design.

TECHNOLOGY

Self-healing, non-inductive.

Polyester wrapped. Epoxy resin sealed.

MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

Polycarbonate métallisé. P.P.S. métallisé (option T) pour nouvelles conceptions.

TECHNOLOGIE

Autocicatrisable, non inductif. Enrobé polyester. Obturé résine époxy.

MARQUAGE

modèle capacité tolérance tension nominale date-code

GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Operating temperature		-55°C +125°C		Température d'utilisation
D. F. Tg δ at 1 kHz	for $C_R \le 1 \mu F$	≤ 20.10 ⁻⁴	pour $C_R \le 1 \mu F$	Tg δ à 1 kHz
	for C _R > 1 μF	≤ 30.10 ⁻⁴	pour $C_R > 1 \mu F$	
Insulation resistance	for $C_R \leq 0.22 \mu F$	≥ 50000 MΩ	pour $C_R \le 0,22 \mu F$	Résistance d'isolement
	for $C_R > 0.22 \mu F$	≥ 10000 MΩ. µ F	pour $C_R > 0,22 \mu F$	
Test voltage		1,6 U _{RC}		Tension de tenue
Insulation between leads and case		≥ 50000 MΩ		Isolement entre bornes réunies et masse

ALTERNATIVE MODELS				MODÈLES ASSOCIÉS
Climatic category	55/125/56	55/125/21	40/085/21	Catégorie climatique
Axial leads	KM 21 (T)	KM 31 (T) KM 311 (T)	KM 41 (T)	Sorties axiales

CAPACITANCE VALUE	S AND RATED VOLTA	AGE (D.C.)									PACITÉ ET DE T	ENSION (U _{RC})
Dimensions (mm)	classe A ou B classe C			0 V		0 V		50 V		0 V	40 63	
			C _R min	C _R max								
12	6	0,6		•					3700 pF	8250 pF	1000 pF	3650 pF
14,5	6	0,6			22600 pF	33200 pF			8450 pF	10000 pF	3740 pF	5230 pF
14,5	6,5	0,6			34000 pF	0,115 μF	10000 pF	33200 pF	10200 pF	15000 pF	5360 pF	7150 pF
14,5	7	0,6			·		34000 pF	53600 pF	15400 pF	25500 pF	7320 pF	11500 pF
20	7	0,8	0,226 <i>μ</i> F	0,475 μF	0,117 μF	0,15 μ F						
20	7,5	0,8					54200 pF	0,1 μ F	25800 pF	47500 pF	11700 pF	22100 pF
20	8	0,8	0,487 μF	0,681 μF	0,154 μF	0,221 μF						
20	8,5	0,8			0,226 μF	0,332 μF	0,102 μ F	0,15 μ F	48700 pF	68100 pF	22600 pF	37400 pF
20	9	0,8	0,698 <i>μ</i> F	1 μF							38300 pF	49900 pF
20	9,5	0,8			0,34 μF	0,475 μF			69800 pF	0,1 μ F		
20	10	0,8					0,154 μ F	0,237 μ F			51000 pF	71500 pF
20	10,5	0,8	1,02 μF	1,5 μF	0,487 μF	0,681 μF						
20	11	0,8					0,24 μF	0,332 <i>μ</i> F	0,102 μF	0,15 μF		
20	11,5	0,8									73200 pF	0,115 μ F
20	12	0,8			0,698 μF	1,15 μF						
20	12,6	0,8	1,54 μF	2,21 μF			0,34 μF	0,536 μF	0,154 μF	0,223 μF		
33	10	1									0,117 <i>μ</i> F	0,174 μF
33	10,5	1	2,26 μF	3,4 μF	1,17 μF	1,5 μF						
33	11	1					0,542 μF	0,82 μF	0,226 μF	0,34 μF	0,178 <i>μ</i> F	0,226 μF
33	11,5	1	3,48 μF	4,87 μF	1,54 μF	2,21 μF						
33	12,6	1					0,825 μF	1,1 μ F	0,348 μF	0,487 μF		
33	13,2	1	4,99 μF	7,15 μF							0,232 μF	0,36 μF
33	13,8	1			2,26 μF	3,4 μF						
33	14,4	1					1,13 μF	1,58 <i>μ</i> F				
33	15	1							0,499 μF	0,75 μF		
33	15,6	1									0,365 μF	0,523 μF
33	16,2	1	7,32 μF	10 μF	3,48 μF	4,87 μF						
33	16,8	1					1,6 μF	2,21 <i>μ</i> F	0,768 μF	1 μF		
33	18	1									0,536 μF	0,715 μF
33	19,2	1	10,2 μF	15 μF	4,99 μF	7,15 μF						
33	20,4	1					2,26 μF	3,32 μ F	1,02 μF	1,5 μF		
33	22,2	1	15,4 <i>μ</i> F	22 μF							0,732 <i>μ</i> F	1 μF
33	22,8	1			7,32 μF	10 μF						
33	24	1					3,4 μF	4,75 μF	1,54 μF	2,21 μF		
max.	max.	max.				± 2	20% - ± 10% - :	± 5% - ± 2% - ±	± 1%			

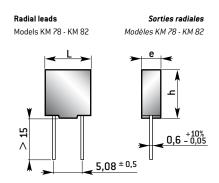
 ${\it Tolerances on dimensions / Tolérances dimensionnelles}$

 \pm 20% - \pm 10% - \pm 5% - \pm 2% - \pm 1% Capacitance tolerances / Tolérances sur capacité

HOW TO ORDER	HOW TO ORDER EXEMPLE DE CODIFICATION À LA COMMANDE										
Model	B,C: Class	T: P.P.S option	W:RoHS	F: Quality level	Capacitance	Capa. tolerance	Rated voltage (V _{DC})	CECC+: Other reliability level			
KM 311	-	-	-	-	0,1 µ F	± 5%	250 V	_			
Modèle	B,C : Classe	T: Option P.P.S.	W : RoHS	F: Niveau de qualité	Capacité	Tol. sur capa.	Tension nom. (V _{CC})	CECC+ : Niveau de fiabilité			

METALLIZED P.C. AND P.P.S. CAPACITORS CONDENSATEURS P.C. ET P.P.S. MÉTALLISÉ

KM78-78 R-78 RS-KM82-82 R-82 RS



DIELECTRIC KM 78/78 R/82/82 R Metallized polycarbonate KM 78 RS/82 RS

metallized P.P.S.

TECHNOLOGY

Self-healing, non-inductive Epoxy resin molded

MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

KM 78/78 R/82/82 R Polycarbonate métallisé KM 78 RS/82 RS P.P.S. métallisé

5,08 ± 0,5

R bbon leads

Models KM 78 R - KM 82 R

KM 78 RS - KM 82 RS

TECHNOLOGIE Autocicatrisable, non inductif Moulé résine époxy

MARQUAGE

≥ 5

modèle capacité tolérance tension nominale date-code

Sorties plates

2,54 ± 0,5

Modèles KM 78 R - KM 82 R KM 78 RS - KM 82 RS

GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Operating temperature		-55°C +125°C		Température d'utilisation
D. F. Tg δ at 1 kHz		≤ 20.10 ⁻⁴		Tg δ à 1 kHz
Insulation resistance	for $C_R \le 0.22 \mu F$	≥ 50000 MΩ	pour $C_R \le 0,22 \mu F$	Résistance d'isolement
	for $C_R > 0.22 \mu F$	≥ 10000 MΩ. µ F	pour C _R > 0,22 μF	
Test voltage		1,6 U _{RC}		Tension de tenue
Insulation between leads and case		\geq 50000 M Ω		Isolement entre bornes réunies et masse

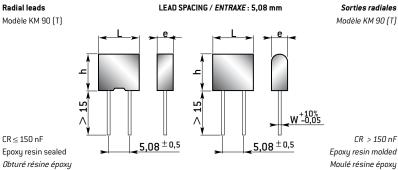
SMD MODEL (SURFACE MOUNT DEVICE)		MODÈLES POUR UTILISATION CMS (MONTAGE EN SURFACE)
KM 78 R - KM 82 R : Iron soldering	55/125/21	KM 78 R - KM 82 R : Soudage au fer
KM 78 RS - KM 82 RS :		KM 78 RS - KM 82 RS :
Soldering conditions according to CECC 00802	Class B /Classe B	Conditions de soudage suivant CECC 00802
Max. soldering temperature by solder reflow	230°C/20 à/to 40 s.	Température max. de soudage par refusion

CAPACITANCE VA	LUES AND RATED VOLTA	GE (D.C.)			VALEURS DE CAPACITÉ ET DE TENSION (U_{RC})					
				8 R - KM 78 RS	KM 82 - KM 82 R - KM 82 RS					
	Dimensions (mm)		50 V	63 V	40 V					
L			C _R	C _R	C _R					
8	8	3		1000 pF						
8	8	3		1 500 pF						
8	8	3		2 200 pF						
8	8	3		3 300 pF						
8	8	3		4 700 pF						
8	8	3		6 800 pF						
8	8	3		10 000 pF						
8	8	3		15 000 pF						
8	8	3		22 000 pF						
8	8	3		33 000 pF						
8	8	3		47 000 pF						
8	8	3		68000 pF						
8	8	3		0,1 <i>μ</i> F						
8	7	3,5			1000 pF					
8	7	3,5			1 500 pF					
8	7	3,5			2 200 pF					
8	7	3,5			3 300 pF					
8	7	3,5			4 700 pF					
8	7	3,5			6 800 pF					
8	7	3,5			10 000 pF					
8	7	3,5			15 000 pF					
8	7	3,5			22 000 pF					
8	7	3,5			33 000 pF					
8	7	3,5			47 000 pF					
8	7	3,5			68 000 pF					
8	7	3,5			0,1 μF					
8	7	3,5	0,15 <i>μ</i> F		0,15 μF					
8	7	5	0,22 <i>μ</i> F		0,22 μF					
8	7	7,5	0,33 μF		0,33 μF					
8	7	8,5	0,47 μF		0,47 μF					
8	7	10			0,68 μF					
8	7	13,5			1 μF					
max	max	max	=	\pm 20% - \pm 10% - \pm 5% - \pm 2% - \pm 1%						

Tolerances on dimensions / Tolérances dimensionnelles

Capacitance tolerances / Tolérances sur capacité

For intermediate value, the dimensions are those of the immediately superior value Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure


HOW TO ORDER	HOW TO ORDER EXEMPLE DE CODIFICATION À LA COMMANI									
Model	R, RS: Version	W: RoHS	F: Quality level	Capacitance	Capa. tolerance	Rated voltage (V _{DC})				
KM 78	-	-	-	3 300 pF	± 10%	63 V				
Modèle	R, RS : Version	W : RoHS	F : Niveau de qualité	Capacité	Tol. sur capa.	Tension nom. (V _{CC})				

KM 90 (T)

Radial leads Modèle KM 90 (T)

CR > 150 nF Epoxy resin molded

Sorties radiales

Modèle KM 90 (T)

DIELECTRIC

Metallized polycarbonate Metallized P.P.S. (Toption) for new design.

TECHNOLOGY

Self-healing, non-inductive Thermoplastic case epoxy resin sealed $(C_R \le 150 \text{ nF})$ Epoxy resin molded case $(C_R > 150 \text{ nF})$

MARKING

 $CR \leq 150 \; nF$

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

Polycarbonate métallisé P.P.S. métallisé (option T) pour nouvelles études.

TECHNOLOGIE

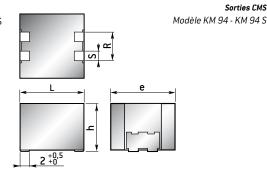
Autocicatrisable, non inductif Boîtier thermoplastique obturé résine époxy $(C_R \leq 150 \text{ nF})$ Boîtier moulé résine époxy ($C_R > 150 \text{ nF}$)

MARQUAGE

modèle capacité tolérance tension nominale date-code

GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Operating temperature		-55°C +125°C		Température d'utilisation
D. F. Tg δ at 1 kHz		≤ 20.10 ⁻⁴		Tg δ à 1 kHz
D. F. Tg δ at 10 kHz		≤ 50.10 ⁻⁴		Tg δ à 10 kHz
Insulation resistance	for $C_R \le 0,22 \mu F$	≥ 50000 MΩ	pour C _R ≤ 0,22 μF	Résistance d'isolement
	for C _R > 0,22 <i>µ</i> F	≥ 10000 MΩ. µ F	pour C _R > 0,22 μF	
Insulation between leads and case		≥ 50000 MΩ		Isolement entre bornes réunies et masse

	VALUES AND R					VALEURS DE CAPACITÉ ET DE TENSION (L
	Dimensio	ons (mm)		50 V	63 V	100 V
				C _R	C _R	C _R
7,3	6,6	2,5	0,6			1 nF
7,3	6,6	2,5	0,6			10 nF
7,3	6,6	2,5	0,6			15 nF
7,3	6,6	2,5	0,6			22 nF
7,3	6,6	2,5	0,6		33 nF	
7,3	6,6	2,5	0,6		47 nF	
7,3	6,6	2,5	0,6	82 nF		
7,3	6,6	2,5	0,6	150 nF		
9,6	8,7	2,5	0,6	470 nF		
9,6	8,7	3	0,6	680 nF		
9,6	8,7	3,8	0,6	1 μF		
max	max	max	+10% - 0,05		± 10% - ± 5%	
		Tolérances dim			Capacitance tolerances / Tolérances sur capacit	té


HOW TO ORDER EXEMPLE DE CODIFICA								
Model	T: Version	W:RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})			
KM 90	_	_	47 nF	± 5%	63 V			
Modèle	T: Version	W: RoHS	Capacité	Tol. sur capa.	Tension nom. (V _{CC})			

METALLIZED P.C. AND P.P.S. CAPACITORS

SMD leads Model KM 94 - KM 94 S

DIELECTRIC

Metallized P.P.S.

TECHNOLOGY

Self-healing, non-inductive Epoxy resin molded MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

P.P.S. métallisé

TECHNOLOGIE

Autocicatrisable, non inductif Moulé résine époxy MARQUAGE

modèle capacité tolérance tension nominale date-code

KM 94 S For space use [ESA/SCC 3006/023].

Sorties CMS

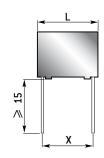
Contact our sales department.

KM 94 \$ Pour utilisation spatiale (ESA/SCC 3006/023). Consulter notre Service Commercial.

GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Climatic category		55/125/56		Catégorie climatique
Operating temperature		−55°C +125°C		Température d'utilisation
D. F. Tg δ at 1 kHz		≤ 20.10 ⁻⁴		Tg δ à 1 kHz
Insulation resistance	for $C_R \le 0.33 \mu F$	≥ 30000 MΩ	pour C _R ≤ 0,33 <i>μ</i> F	Résistance d'isolement
	for C _R > 0,33 μF	≥ 10000 MΩ. µ F	pour C _R > 0,33 μF	
Test voltage		1,6 U _{RC}		Tension de tenue
Insulation between leads and case		> 30000 MQ		Isolement entre hornes réunies et masse

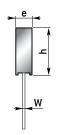
SMD MODEL (SURFACE MOUNT DEVICE)		MODÈLES POUR UTILISATION CMS (MONTAGE EN SURFACE)
Soldering conditions according to CECC 00802	Class B /Classe B	Conditions de soudage suivant CECC 00802
Max. soldering temperature by solder reflow	230°C/20 to/à 40 s.	Température max. de soudage par refusion

CAPACITANO	CE VALUES ANI	D RATED VOLT	AGE (D.C.)								VALEURS DE	CAPACITÉ ET DE	TENSION ()
					KM 94 - 1		KM 94 - 1	KM 94 - 2		KM 94 - 2	KM 94 - 3		KM 94 - 3
Dimension	s (mm)					KM 94 S - 1	KM 94 S - 1		KM 94 S - 2	KM 94 S - 2		KM 94 S - 3	KM 94 S - 3
					40 V	50 V	100 V	40 V	50 V	100 V	40 V	50 V	100 V
					C _R	C _R	C _R	C _R	C _R	C _R	C _R	C _R	C_R
8	4,5	7,5	4	1	4,7 nF	4,7 nF	4,7 nF						
8	4,5	7,5	4	1	6,8 nF	6,8 nF	6,8 nF						
8	4,5	7,5	4	1	10 nF	10 nF	10 nF						
8	4,5	7,5	4	1	12 nF	12 nF	12 nF						
8	4,5	7,5	4	1	15 nF	15 nF	15 nF						
8	4,5	7,5	4	1	22 nF	22 nF	22 nF						
8	4,5	7,5	4	1	33 nF	33 nF	33 nF						
8	4,5	7,5	4	1	47 nF	47 nF	47 nF						
8	4,5	7,5	4	1	68 nF	68 nF	68 nF						
8	4,5	7,5	4	1	0,1 μF	0,1 μF	0,1 <i>μ</i> F						
8	4,5	7,5	4	1	0,15 <i>μ</i> F	0,15 μF							
8	4,5	7,5	4	1	0,22 <i>μ</i> F	0,22 <i>μ</i> F							
8	7,5	8,5	4	1				0,33 <i>μ</i> F	0,33 <i>μ</i> F	0,15 <i>μ</i> F			
8	7,5	8,5	4	1				0,47 μF	0,47 μF	0,22 μF			
10,7	7,5	10,7	5	1,5							0,68 µF	0,68 <i>μ</i> F	0,33 μF
10,7	7,5	10,7	5	1,5							1 μF	1 μF	0,47 μF
10,7	7,5	10,7	5	1,5							1,2 μF		
max	max	max	± 0,2	± 0,2				± 20% - ±	: 10% - ± 5% - ±	2% - ± 1%			


Capacitance tolerances / Tolérances sur capacité Tolerances on dimensions Tolérances dimensionnelles

For intermediate value, the dimensions are those of the immediately superior value Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure

HOW TO ORDER EXEMPLE DE CODIFICATION À LA COMM								
Model	A,N,P: Class	S,F : Quality level	Case	W:RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})	Lev B/C/EM : Space use
KM 94	_	-	1	_	33 nF	± 10%	100 V	-
Modèle	A,N,P: Classe	S,F : Niveau de qualité	Boîtier	W : RoHS	Capacité	Tol. sur capa.	Tension nom. (V_{CC})	CECC+: Other reliability level



Radial leads Model KM 97 (T) A.C. CURRENT 400 Hz to 40 kHz

PARTICULARITY Sorties radiales

Modèle KM 97 (T) COURANT ALTERNATIF de 400 Hz à 40 kHz

Between 1 kHz and 40 kHz, the applied voltage shall not exceed the acceptable A.C. value indicated in the table. The transient current shall not exceed the I_{RA} value specified for sinewave and non sinewave voltages.

0,9 U _{RA} 0,8 U _{RA} 0,6 U _{RA} 0,4 U _{RA} 0,2 U _{RA} 0,1 U _{RA}	1 kHz	2 kHz	4 kHz	10 kHz	20 kHz	40 kHz
	0,9 U _{RA}	0,8 U _{RA}	0,6 U _{RA}	0,4 U _{RA}	0,2 U _{RA}	0,1 U _{RA}

PARTICULARITÉS

Entre 1 kHz et 40 kHz la tension appliquée ne doit pas dépasser la valeur efficace admissible indiquée dans le tableau. D'autre part, le courant traversant efficace ne doit pas dépasser la valeur de l_{RA} spécifiée aussi bien pour les tensions sinusoïdales que celles non sinusoïdales.

DIELECTRIC

Metallized polycarbonate Metallized P.P.S. (Toption) for new design.

TECHNOLOGY

Self-healing, non-inductive Self-extinguishable Plastic case Epoxy resin sealed

MARKING

model capacitance tolerance rated voltage U_{RA} date-code

DIÉLECTRIQUE

Polycarbonate métallisé. P.P.S. métallisé (option T) pour nouvelles études.

TECHNOLOGIE

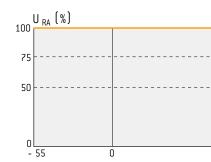
Autocicatrisable, non inductif Auto-extinguible Boîtier plastique Obturé résine époxy

MARQUAGE

modèle capacité tolérance tension nominale U_{RA} date-code

GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Climatic category		55/100/56		Catégorie climatique
Operating temperature		-55°C +100°C		Température d'utilisation
D. F. Tg δ at 1 kHz		≤ 20.10 ⁻⁴		Tg δ à 1 kHz
Test voltage	for U _{RA} 120 V	200 V _{CC}	pour U _{RA} 120 V	Tension de tenue
	for U _{RA} 150 V	250 V _{CC}	pour U _{RA} 150 V	_
	for U _{RA} 208 V	350 V _{CC}	pour U _{RA} 208 V	_
Insulation between leads and case		≥ 30000 MΩ		Isolement entre bornes réunies et masse
Measurement and test conditions		NF C 83153		Conditions de mesures et d'essais

CAPACITANCE VALUES AND RATED VOLTAGE VALEURS DE CAPACITÉ ET DE TE									ACITÉ ET DE TENSION		
Dimensions	s (mm) U _{RA} (4	100 Hz)			120 V 150 V			υV	208 V		
	h	е	X	w	C _R	I _{RA} *	C _R		C _R		
18	14,5	5	15,24	0,8	0,47 μF	0,9	0,33 μF	1,1	0,15 <i>µ</i> F	0,7	
18	14,5	6,25	15,24	0,8	0,68 <i>µ</i> F	1,3	0,47 μF	1,6	0,22 <i>μ</i> F	1	
18	15,5	7,5	15,24	0,8	1 μF	2	0,68 µF	2,3	0,33 <i>μ</i> F	1,5	
18	17,5	10	15,24	0,8	2,2 <i>μ</i> F	4,3	1 μF	3,4	0,47 μF	2,2	
18	21,5	12,5	15,24	0,8	3,3 <i>μ</i> F	6,4	1,5 <i>μ</i> F	5,1	0,82 <i>μ</i> F	3,9	
32	19,5	10	27,94	1	4,7 μF	4,2	2,2 μF	3	1 μF	1,9	
32	22,5	12,5	27,94	1	6,8 <i>μ</i> F	6,1	3,3 μF	4,5	2,2 μF	4,2	
32	26	15	27,94	1	10 μF	8,9	4,7 μF	6,4	3,3 μF	6,3	
+ 0.5	+ 0.5	+ 0.5	+ 0.5	+10%			+ 20% -	+ 10%			


Capacitance tolerances / Tolérances sur capacité Tolerances on dimensions Tolérances dimensionnelles

> Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure * I_{RA} : Intensité efficace admissible en ampères

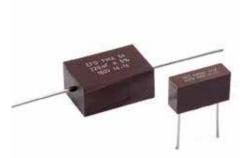
> > 100

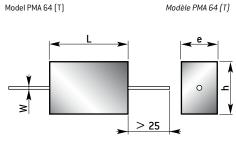
* I_{RA}: Permissible RMS current in amperes

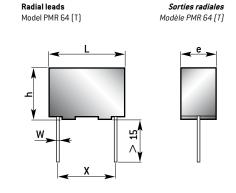
For intermediate value, the dimensions are those of the immediately superior value

Rated voltage versus temperature Tension nominale en fonction de la température

75			
50	 		
35			
0			
U	55	0	85 100


Rated current versus temperature Courant nominal en fonction de la température


HOW TO ORDER				EXEMPLE C	E CODIFICATION À LA COMMANDE
Model	T: P.P.S. option	W:RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{AC})
KM 97	-	-	2,2 µF	± 10%	150 V
Modèle	T: Option P.P.S.	W: RoHS	Capacité	Tol. sur capa.	Tension nom. $(V_{\Gamma A})$



PMR 64 (T) - PMA 64 (T)

RoHS = W

DIELECTRIC

Metallized polycarbonate. Metallized P.P.S. (Toption) for new design.

TECHNOLOGY

Self-healing, non-inductive. Epoxy resin molded.

MARKING

Axial leads

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

Polycarbonate métallisé. P.P.S. métallisé (option T) pour nouvelles études.

Sorties axiales

TECHNOLOGIE

Autocicatrisable, non inductif. Moulé résine époxy.

MARQUAGE

modèle capacité tolérance tension nominale date-code

GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Operating temperature		−55°C +125°C		Température d'utilisation
D. F. Tg δ at 1 kHz	for $C_R \le 1 \mu F$	≤ 20.10 ⁻⁴	pour $C_R \le 1 \mu F$	Tg δ à 1 kHz
D. F. Tg δ at 100 kHz	for $C_R > 1 \mu F$	≤ 15.10 ⁻⁴	pour C _R > 1 μF	Tg δ à 100 kHz
Insulation resistance	for $C_R \le 0.22 \mu F$	≥ 50000 M Ω	pour $C_R \le 0,22 \mu F$	Résistance d'isolement
	for $C_R > 0.22 \mu F$	≥ 10000 MΩ. µ F	pour $C_R > 0,22 \mu F$	
Test voltage		1,6 U _{RC}		Tension de tenue
Insulation between leads and case		\geq 50000 M Ω		Isolement entre bornes réunies et masse

CAPACITAN	NCE VALUES	AND RATED V	OLTAGE (D.C	:.)					VALEURS DE CAPACIT	É ET DE TENSION (U _{RC})
Dimension	ns (mm)				40 V	63 V	160 V	250 V	400 V	630 V
L			Х		C _R	C _R	C _R	C _R	C _R	C _R
11	6,5	4	7,62	0,6			10 nF	10 nF	4,7 nF	470 pF
11	6,5	4	7,62	0,6			15 nF	15 nF	6,8 nF	680 pF
11	6,5	4	7,62	0,6						1 nF
11	6,5	4	7,62	0,6						1,5 nF
11	6,5	4	7,62	0,6						2,2 nF
11	6,5	4	7,62	0,6						3,3 nF
11	8,5	4	7,62	0,6			22 nF	22 nF	10 nF	4,7 nF
11	9	6	7,62	0,6		33 nF	33 nF C	33 nF C	15 nF C	6,8 nF C
11	9	6	7,62	0,6		47 nF	47 nF C	47 nF C	22 nF C	10 nF C
14	8	5	10,16	0,6	0,22 <i>μ</i> F	68 nF	33 nFL	33 nF L	15 nFL	6,8 nF L
14	8	5	10,16	0,6		0,1 <i>μ</i> F	47 nFL	47 nF L	22 nFL	10 nF L
14	8	5	10,16	0,6		0,15 <i>μ</i> F				
18	8,5	6	15,24	0,8	0,33 μF	0,22 <i>μ</i> F	68 nF	68 nF	33 nF	15 nF
18	8,5	6	15,24	0,8	0,47 μF		0,1 μ F	0,1 <i>μ</i> F	47 nF	22 nF
18	12	8	15,24	0,8	0,68 <i>µ</i> F	0,33 μF	0,15 <i>µ</i> F	0,15 <i>µ</i> F	68 nF	33 nF
18	12	8	15,24	0,8	1 μF	0,47 μF	0,22 <i>µ</i> F	0,22 <i>µ</i> F	0,1 <i>μ</i> F	47 nF
18	14	10	15,24	0,8	1,5 <i>μ</i> F	0,68 µF	0,33 <i>μ</i> F	0,33 μF	0,15 μF	68 nF
18	14	10	15,24	0,8	2,2 μF	1 μF	0,47 μF	0,47 <i>µ</i> F	0,22 <i>μ</i> F	0,1 μF
32	12	8	27,94	1	3,3 <i>μ</i> F	1,5 μF	0,68 <i>µ</i> F	0,68 <i>µ</i> F	0,33 <i>μ</i> F	0,15 μF
32	16	10	27,94	1	4,7 μF	2,2 μF	1 μF	1 μF	0,47 μF	0,22 <i>µ</i> F
32	18	12	27,94	1	6,8 <i>μ</i> F	3,3 <i>μ</i> F	1,5 μF	1,5 <i>μ</i> F	0,68 <i>µ</i> F	0,33 μF
32	21	14	27,94	1	10 μF	4,7 μF	2,2 μF	2,2 μF	1 μF	0,47 μF
32	24	16	27,94	1	15 <i>μ</i> F	6,8 <i>μ</i> F	3,3 μF	3,3 <i>μ</i> F	1,5 <i>μ</i> F	0,68 <i>μ</i> F
32	28	18	27,94	1	22 μF	10 μF	4,7 μF	4,7 μF	2,2 μF	1 μF
± 0,5	± 0,5	± 0,5	± 0,5	+10%			± 20% - ± 10% - ±	± 5% - ± 2% - ± 1%		

Tolerances on dimensions / Tolérances dimensionnelles

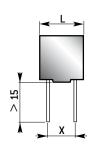
 \pm 20% - \pm 10% - \pm 5% - \pm 2% - \pm 1% Capacitance tolerances / Tolérances sur capacité

For intermediate value, the dimensions are those of the immediately superior value $\,$

HOW TO ORDER	HOW TO ORDER EXEMPLE DE CODIFICATION À LA COMMAND.												
Model	T: P.P.S option	L, C : Case option	W: RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})							
PMR 64	-	-	_	33 nF	± 5%	160 V							
Modèle	T: Option P.P.S.	L, C : Option boîtier	W : RoHS	Capacité	Tol. sur capa.	Tension nom. (V _{CC})							

PM 67 (T) - PM 72 (T)

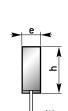
RoHS = W

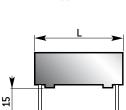

Metallized polycarbonate. Metallized P.P.S. (T option) for new design.

DIELECTRIC

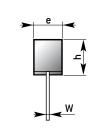
TECHNOLOGY

Self-healing, non-inductive. Epoxy resin molded.


Radial leads Model PM 67 (T)


MARKING

model capacitance tolerance rated voltage date-code


Sorties radiales Modèle PM 67 (T)

Radial leads Model PM 72 (T)

Sorties radiales Modèle PM 72 (T)

DIÉLECTRIQUE

Polycarbonate métallisé. P.P.S. métallisé (option T) pour nouvelles études.

TECHNOLOGIE

Autocicatrisable, non inductif. Moulé résine époxy.

MARQUAGE

modèle capacité tolérance tension nominale date-code

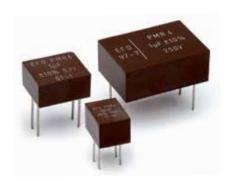
GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Operating temperature		-55°C +125°C		Température d'utilisation
D. F. Tg δ at 1 kHz	for $C_R \le 1 \mu F$	≤ 20.10 ⁻⁴	pour $C_R \le 1 \mu F$	Tg δ à 1 kHz
D. F. Tg δ at 100 kHz	for $C_R > 1 \mu F$	≤ 15.10 ⁻⁴	pour C _R > 1 <i>μ</i> F	Tgδà 100 kHz
Insulation resistance	for $C_R \le 0.22 \mu F$	≥ 50000 MΩ	pour C _R ≤ 0,22 <i>μ</i> F	Résistance d'isolement
	for C _R > 0,22 μF	≥ 10000 MΩ. µ F	pour C _R > 0,22 μF	
Test voltage		1,6 U _{RC}		Tension de tenue
Insulation between leads and case		≥ 50000 MΩ		Isolement entre bornes réunies et masse

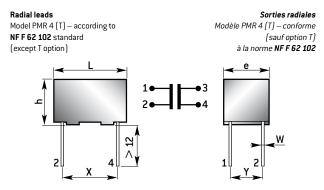
CAPACITAN	ICE VALUES A	AND RATED V	OLTAGE (D.C	:.)								ALEURS DE CAI		ENSION (U _F
Dimensior	ns (mm)							⁷ 2 (T)				PM 6		
	,				40) V	6	3 V	16	0 V	63 V	- 100 V	160 V	- 250 V
					C _R min	C _R max								
10	10	2,5	7,62	0,6	68	nF	1 nF	1,5 nF	1 nF	1,5 nF				
10	10	2,5	7,62	0,6	0,1	μF	2,2 nF	3,3 nF	2,2 nF	3,3 nF				
10	10	2,5	7,62	0,6			4,7 nF	6,8 nF	4,7 nF	6,8 nF				
10	10	2,5	7,62	0,6			10 nF	15 nF	10 nF	15 nF				
10	10	2,5	7,62	0,6			22 nF	33 nF	22	nF				
10	10	2,5	7,62	0,6			47	'nF						
10	10	5	7,62	0,6	0,15 <i>μ</i> F	0,22 <i>μ</i> F	68 nF	0,1 μF	33 nF	47 nF				
11	6,5	4	7,62	0,6							1 nF	1,5 nF		
11	6,5	4	7,62	0,6							2,2 nF	3,3 nF		
11	6,5	4	7,62	0,6							4,7	7 nF		
11	8,5	4	7,62	0,6							6,8 nF	10 nF	1 nF	1,5 nF
11	8,5	4	7,62	0,6							15 nF	22 nF	2,2 nF	3,3 nF
11	8,5	4	7,62	0,6							33 nF	47 nF	4,7 nF	6,8 nF
11	8,5	4	7,62	0,6									10 nF	15 nF
11	8,5	4	7,62	0,6									22	nF
11	9	6	7,65	0,6							68 nF	0,1 μF		
17,5	10	5	15,24	0,8	0,33 <i>μ</i> F	0,47 µF	0,15 μF	0,22 <i>μ</i> F	68 nF	0,1 <i>μ</i> F				
17,5	10	7,5	15,24	0,8	0,68 <i>µ</i> F	1 μF	0,33 μF	0,47 μF	0,15 <i>μ</i> F	0,22 <i>µ</i> F				
17,5	10	10	15,24	0,8	1,5 <i>μ</i> F	2,2 μF	0,68 <i>μ</i> F	1 μF	0,33 <i>μ</i> F	0,47 μF				
32	10	12,5	27,94	1	3,3 <i>μ</i> F	4,7 μF	1,5 μF	2,2 µF	0,68 μF	1 μF				
32	10	16	27,94	1	6,8	μF	3,3	βµF	1,5	μF				<u> </u>
32	10	19,5	27,94	1	10	μF	4,7	PμF	2,2	μF				
32	10	25	27,94	1	15	μF	6,8	βµF	3,3	μF				
32	10	30	27,94	1			10	μF	4,7	μF				
± 0,5	± 0,5	± 0,5	± 0,5	+10%				± 2	20% - ± 10% - ±	± 5% - ± 2% - ±	= 1%			

 \pm 20% - \pm 10% - \pm 5% - \pm 2% - \pm 1% Capacitance tolerances / Tolérances sur capacité

Tolerances on dimensions / Tolérances dimensionnelles

Capacitance toler


For intermediate value, the dimensions are those of the immediately superior value


Toute valeur in

HOW TO ORDER	HOW TO ORDER EXEMPLE DE CODIFICATION À LA COMMANDE													
Model	T: P.P.S option	W: RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})									
PM 72	-	-	10 nF	± 5%	160 V									
Modèle	T: Option P.P.S.	W : RoHS	Capacité	Tol. sur capa.	Tension nom. (V _{CC})									

PMR 4 (T)

SAFETY CAPACITORS CONDENSATEURS DE SECURITE

DIELECTRIC

Metallized polycarbonate. Metallized P.P.S. (Toption) for new design.

TECHNOLOGY

Self-healing, non-inductive. Epoxy resin molded.

MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

Polycarbonate métallisé. P.P.S. métallisé (option T) pour nouvelles études.

TECHNOLOGIE

Autocicatrisable, non inductif. Moulé résine époxy.

MARQUAGE

modèle capacité tolérance tension nominale date-code

GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Operating temperature		−55°C +125°C		Température d'utilisation
D. F. Tg δ at 1 kHz	for $C_R \le 1 \mu F$	≤ 20.10 ⁻⁴	pour $C_R \le 1 \mu F$	Tg δ à 1 kHz
D. F. Tg δ at 100 kHz	for $C_R > 1 \mu F$	≤ 15.10 ⁻⁴	pour C _R > 1 μ F	Tg δ à 100 kHz
Insulation resistance	for $C_R \le 0.22 \mu F$	≥ 50000 MΩ	pour C _R ≤ 0,22 <i>μ</i> F	Résistance d'isolement
	for C _R > 0,22 μF	≥ 10000 MΩ. µ F	pour C _R > 0,22 μF	
Test voltage		1,6 U _{RC}		Tension de tenue
Insulation between leads and case		≥ 50000 MΩ		Isolement entre bornes réunies et masse

CAPACITAN	ICE VALUES A	AND RATED V	OLTAGE (D.C						V	ALEURS DE CAPACITÉ	ET DE TENSION (U_{RC})
Dimension	ns (mm)					40 V	63 V	160 V	250 V	400 V	630 V
	h	е	Х	Υ	w	C _R	C _R	C _R	C _R	C _R	C _R
11	10	15	7,62	5,08	0,6						1 nF
11	10	15	7,62	5,08	0,6						1,5 nF
11	10	15	7,62	5,08	0,6						2,2 nF
11	10	15	7,62	5,08	0,6						3,3 nF
11	10	15	7,62	5,08	0,6						4,7 nF
11	10	15	7,62	5,08	0,6						6,8 nF
11	10	15	7,62	5,08	0,6	0,47 μF	0,22 <i>μ</i> F	68 nF	33 nF	22 nF	10 nF
11	10	15	7,62	5,08	0,6	0,68 <i>µ</i> F	0,33 <i>μ</i> F	0,1 <i>μ</i> F	47 nF	33 nF	15 nF
14	10	15	10,16	5,08	0,6	1 μF	0,47 μF	0,15 <i>μ</i> F	68 nF	47 nF	22 nF
14	10	15	10,16	5,08	0,6	1,5 μF	0,68 <i>μ</i> F	0,22 <i>μ</i> F	0,1 <i>μ</i> F	68 nF	33 nF
19	10	16	15,24	5,08	0,8	2,2 <i>μ</i> F	1 μF	0,33 <i>µ</i> F	0,15 μF	0,1 μF	47 nF
19	10	16	15,24	5,08	0,8	3,3 <i>μ</i> F	1,5 μF	0,47 μF	0,22 <i>μ</i> F	0,15 <i>μ</i> F	68 nF
32	10	16	27,94	5,08	0,8	4,7 μF	2,2 μF	0,68 <i>µ</i> F	0,33 <i>µ</i> F	0,22 <i>μ</i> F	0,1 μF
32	10	16	27,94	5,08	0,8	6,8 <i>μ</i> F	3,3 <i>μ</i> F	1 μF	0,47 μF	0,33 <i>μ</i> F	0,15 <i>μ</i> F
32	13	17	27,94	5,08	0,8	10 <i>μ</i> F	4,7 μF	1,5 <i>μ</i> F	0,68 <i>µ</i> F	0,47 μF	0,22 <i>μ</i> F
32	13	23	27,94	10,16	0,8	15 μF	6,8 μF	2,2 μF	1 μF	0,68 <i>µ</i> F	0,33 μF
32	16	26	27,94	10,16	0,8	22 μF	10 μF	3,3 <i>μ</i> F	1,5 μF	1 μF	0,47 μF
± 0,5	± 0,5	± 0,5	± 0,5		+10% - 0,05			± 20% - ± 10% - ±	= 5% - ± 2% - ± 1%		

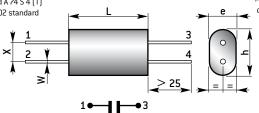
Tolerances on dimensions / Tolérances dimensionnelles

Capacitance tolerances / Tolérances sur capacité

For intermediate value, the dimensions are those of the immediately superior value

Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure

HOW TO ORDER	HOW TO ORDER EXEMPLE DE CODIFICATION À LA COMMAND												
Model	T: P.P.S option	W:RoHS	D : Quality level	Capacitance	Capa. tolerance	Rated voltage (V _{DC})							
PMR 4	-	-	-	10 µ F	± 10%	63 V							
Modèle	T: Option P.P.S.	W : RoHS	D : Niveau de qualité	Capacité	Tol. sur capa.	Tension nom. (V _{CC})							



A 64 S 4 (T) - A 74 S 4 (T)

SAFETY CAPACITORS / CONDENSATEURS DE SECURITE Axial leads

Models A 64 S 4 (T) and A 74 S 4 (T) according to NF F 62 102 standard (except Toption)

Sorties axiales

Modèles A 64 S 4 (T) et A 74 S 4 (T) conformes à la norme NF F 62 102 (sauf option T)

DIELECTRIC

Metallized polycarbonate. Metallized P.P.S. (Toption) for new design.

TECHNOLOGY

Self-healing, non-inductive. Polyester wrapped. Epoxy resin sealed.

MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

Polycarbonate métallisé. P.P.S. métallisé (option T) pour nouvelles études.

TECHNOLOGIE

Autocicatrisable, non inductif. Enrobé polyester. Obturé résine époxy.

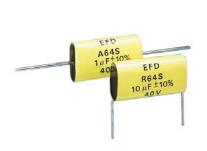
MARQUAGE

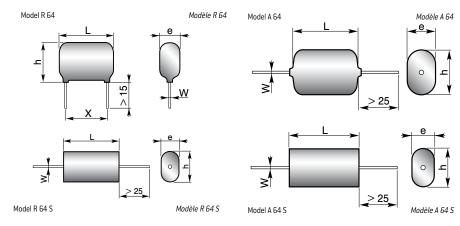
modèle capacité tolérance tension nominale date-code

GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Operating temperature		-55°C +125°C		Température d'utilisation
D. F. Tg δ at 1 kHz	for $C_R \le 1 \mu F$	≤ 20.10 ⁻⁴	pour $C_R \le 1 \mu F$	Tg δ à 1 kHz
D. F. Tg δ at 100 Hz	for C _R > 1 μF	≤ 15.10 ⁻⁴	pour $C_R > 1 \mu F$	Tg δ à 100 Hz
Insulation resistance	for $C_R \leq 0.22 \mu F$	≥ 50000 MΩ	pour $C_R \le 0,22 \mu F$	Résistance d'isolement
	for $C_R > 0.22 \mu F$	≥ 10000 MΩ. µ F	pour C _R > 0,22 μF	
Test voltage		1,6 U _{RC}		Tension de tenue
Insulation between leads and case		≥ 50000 MΩ		Isolement entre bornes réunies et masse

CAPACITA	NCE VALUES	AND RATED V	OLTAGE (D.C	:1						VALEURS DE I	CAPACITÉ ET DE TENSION (Upc)
					A 64 S 4 (T)				A 74 S 4 (T)		THE STATE OF THE S
Dimensio	ns (mm)				160 V	40 V	63 V	160 V	250 V	400 V	630 V
L				W	C _R min C _R max	C _R	C _R	C _R	C _R	C _R	C _R min C _R max
14	11	8	5,08	0,6	1000 pF à 10 nF						1000 pF à 1,5 nF
14	12	9	5,08	0,6		0,47 μF	0,22 <i>µ</i> F	68 nF			2,2 nF à 6,8 nF
14	12,5	9,5	5,08	0,6					33 nF	22 nF	10 nF
14	13	10	5,08	0,6	15 nF			0,1 μF			
14	13,5	10,5	5,08	0,6		0,68 µF	0,33 μF		47 nF		
14	14	11	5,08	0,6						33 nF	15 nF
16	12	9	5,08	0,6		1 μF	0,47 μF	0,15 μF	68 nF		
16	12,5	9,5	5,08	0,6				0,22 μF		47 nF	22 nF
16	13,5	10,5	5,08	0,6		1,5 μF	0,68 <i>µ</i> F		0,1 μF		
21	10	7	5,08	0,8	22 nF à 33 nF						
21	12,5	9,5	5,08	0,8		2,2 μF	1 μF		0,15 <i>μ</i> F	68 nF	33 nF
21	13	9	5,08	0,8				0,33 μF			
21	13	10	5,08	0,8	47 nF à 0,47 μF			0,47 μF		0,1 μF	47 nF
21	14	10	5,08	0,8					0,22 <i>μ</i> F		
21	14,5	11,5	5,08	0,8						0,15 μF	
21	15	11	7,62	0,8		3,3 μF	1,5 <i>μ</i> F				68 nF
21	17	13	7,62	0,8							0,1 <i>μ</i> F
34	12,5	9	5,08	0,8		4,7 μF	2,2 μF	0,68 μF	0,33 <i>μ</i> F	0,22 <i>μ</i> F	
34	13	10	5,08	0,8				1 μF			
34	14	8	5,08	0,8	0,68 <i>μ</i> F						
34	14	11	5,08	0,8	1 <i>μ</i> F	6,8 μF	3,3 <i>μ</i> F		0,47 μF	0,33 <i>μ</i> F	0,15 <i>μ</i> F
34	15	11	7,62	0,8	1,5 <i>μ</i> F						
34	16	12,5	7,62	0,8				1,5 μF	0,68 <i>μ</i> F	0,47 μF	
34	16,5	13,5	7,62	0,8		10 μF	4,7 μF				0,22 <i>µ</i> F
34	17	14	7,62	0,8				2,2 μF	1 μF		
34	19	15	7,62	0,8							0,33 <i>μ</i> F
34	21	12,5	10,16	0,8						0,68 <i>µ</i> F	
34	21	18	10,16	0,8							0,47 μF
34	22	13	10,16	0,8	2,2 μF	15 μF	6,8 <i>μ</i> F				
34	24	15	10,16	0,8		22 μF	10 μF	3,3 μF	1,5 μF	1 μF	
34	25,5	16,5	12,7	0,8				4,7 μF			
34	27	18	12,7	0,8		33 μF			2,2 μF		
34	28	19	12,7	0,8							0,68 μF
34	32	23	12,7	0,8							1 μF
45	26	17	12,7	1			15 μF	6,8 μF	3,3 μF	1,5 μF	
45	26	17	12,7	1			22 μF			2,2 μF	
45	32	21	12,7	1			33 μF	10 μF	4,7 μF	3,3 μF	1,5 <i>μ</i> F
45	37	26	12,7	1						4,7 μF	2,2 μF
max.	max.	max.	± 1	+10% - 0,05			± 20% - ±	10% - ± 5% - ±	2% - ± 1%		

 \pm 20% - \pm 10% - \pm 5% - \pm 2% - \pm 1% Capacitance tolerances / Tolérances sur capacité


Tolerances on dimensions / Tolérances dimensionnelles For intermediate value, the dimensions are those of the immediately superior value


HOW TO ORDER	HOW TO ORDER EXEMPLE DE CODIFICATION À LA COMMANDE												
Model	T: P.P.S option	W: RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})								
A 74 S 4	-	-	10 µF	± 20%	160 V								
Modèle	T: Option P.P.S.	W : RoHS	Capacité	Tol. sur capa.	Tension nom. (V _{CC})								

METALLIZED P.C. AND P.P.S. CAPACITORS CONDENSATEURS P.C. ET P.P.S. MÉTALLISÉ

R 64 (T) - A 64 (T) - R64 S (T) - A 64 S (T)

DIELECTRIC

Metallized polycarbonate

TECHNOLOGY

Self-healing, non-inductive R 64/A 64 : Epoxy resin dipped R 64 S/A 64 S: Polyester

wrapped Epoxy resin sealed

MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

Polycarbonate métallisé

TECHNOLOGIE

Autocicatrisable, non inductif R 64/A 64: Enrobé résine époxy R 64 S/A 64 S: Enrobé

polyester Obturé résine époxy

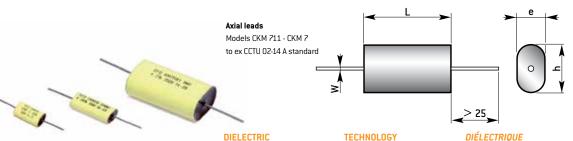
MARQUAGE

modèle capacité tolérance tension nominale date-code

GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Operating temperature		−55°C +125°C		Température d'utilisation
Capacitance range		1000 pf - 22 <i>µ</i> F		Gamme de capacité
Capacitance tolerances	=	±20%, ±10%, ±5%, ±2%, ±1%		Tolérances sur capacité
Rated voltage range		40 V - 630 V		Température d'utilisation
D. F. Tg δ at 1 kHz	for $C_R \le 1 \mu F$	≤ 20.10 ⁻⁴	pour $C_R \le 1 \mu F$	Tg∂à1 kHz
D. F. Tg δ at 100 kHz	for $C_R > 1 \mu F$	≤ 15.10 ⁻⁴	pour C _R > 1 μ F	Tg ∂ à 100 kHz
Insulation resistance	for $C_R \le 0.22 \mu F$	\geq 50000 M Ω	pour $C_R \le 0,22 \mu F$	Résistance d'isolement
	for C _R > 0,22 <i>µ</i> F	≥ 10000 MΩ. µ F	pour C _R > 0,22 <i>µ</i> F	
Test voltage		1,6 U _{RC}		Tension de tenue
Insulation between leads and case		≥ 50000 MΩ		Isolement entre bornes réunies et masse

CAPACITANCE VALUES AND RATED VOLTAGE (D.C.) VALEURS DE CAPACITÉ ET DE TENSION (U _{rc}										TÉ ET DE TENSION (U _{RC})	
Dimension	ıs (mm)				40 V	63 V	160 V	250 V	400 V	630 V	
		е	х	W	C _R	C _R	C _R	C _R	C _R	C _R	
10	6	3	10	0,6						1000 pF	
10	6	3	10	0,6						1500 pF	
10	6	3	10	0,6			10000 pF	10000 pF	4700 pF	2200 pF	
10	6	3	10	0,6			15000 pF	15000 pF	6800 pF	3300 pF	
10	7	5	10	0,6			22000 pF	22000 pF	10000 pF	4700 pF	
10	7	5	10	0,6	0,1 <i>μ</i> F	47000 pF	33000 pF	33000 pF	15000 pF	6800 pF	
10	7	5	10	0,6	0,15 <i>μ</i> F	68000 pF	47000 pF	47000 pF	22000 pF	10000 pF	
13	7	4	13	0,6	0,22 <i>μ</i> F	0,1 µF	·				
13	8	5	13	0,6	0,47 μF	0,15 μF	68000 pF C	68000 pF C			
13	9	5	13	0,6			0,1 μ F C	0,1 μ F C			
17	6	3	17	0,8			68000 pF L	68000 pF L	33000 pF	15000 pF	
17	7	4	17	0,8		0,22 µF	0,1 <i>μ</i> F L	$0,1 \mu F$ L	47000 pF	22000 pF	
17	8	5	17	0,8	0,68 <i>µ</i> F	0,33 μF	0,15 μF	0,15 <i>μ</i> F	68000 pF	33000 pF	
17	9	6	17	0,8	1 <i>μ</i> F	0,47 μF	0,22 <i>μ</i> F	0,22 <i>μ</i> F	0,1 <i>µ</i> F	47000 pF	
17	12	6	17	0,8	1,5 <i>μ</i> F	0,68 µF	0,33 <i>µ</i> F	0,33 μF	0,15 <i>µ</i> F	68000 pF	
17	13	7	17	0,8	2,2 <i>µ</i> F	1 <i>μ</i> F	0,47 μF C	0,47 μF C	0,22 <i>µ</i> F	0,1 µF	
32	11	5	33	1			0,47 μF L	0,47 μF L			
32	12	6	33	1	3,3 <i>µ</i> F	1,5 <i>µ</i> F	0,68 <i>µ</i> F	0,68 <i>µ</i> F	0,33 <i>µ</i> F	0,15µF	
32	13	8	33	1	4,7 μF	2,2 µF	1 <i>μ</i> F	1 <i>μ</i> F	0,47 μF	0,22 μF	
32	14	9	33	1	6,8 <i>µ</i> F	3,3 <i>µ</i> F	1,5 <i>µ</i> F	1,5 μF	0,68 <i>µ</i> F	0,33 μF	
32	19	10	33	1	10 μF	4,7 μF	2,2 <i>µ</i> F	2,2 µF	1 μF	0,47 μF	
32	22	12	33	1	15 μF	6,8 <i>µ</i> F	3,3 <i>µ</i> F	3,3 <i>µ</i> F	1,5 <i>µ</i> F	0,68 <i>μ</i> F	
32	25	15	33	1	22 <i>µ</i> F	10 μF	4,7 μF	4,7 μF	2,2 <i>µ</i> F	1 <i>μ</i> F	
± 1	± 1	± 1	± 1	+10% - 0,05	± 20% - ± 10% - ± 5% - ± 2% - ± 1%						

L: long model / C: short model L: modèle long / C: modèle court


HOW TO ORDER EXEMPLE DE CODIFICATION À LA COMMAI										
Model	T: P.P.S option	W:RoHS	C-L : Case	Capacitance	Capa. tolerance	Rated voltage (V _{DC})				
R 64	-	-	-	0,1 µ F	± 10%	63 V				
Modèle	T: Option P.P.S.	W : RoHS	C-L : boîtier	Capacité	Tol. sur capa.	Tension nom. (V _{CC})				

Tolerances on dimensions / Tolérances dimensionnelles

Capacitance tolerances / Tolérances sur capacité

KM 711 (T) - KM 7 (T)

Sorties axiales

Modèles CKM 711 - CKM 7 de l'ex-norme CCTU 02-14 A

DIELECTRIC

Metallized polycarbonate

Self-healing,

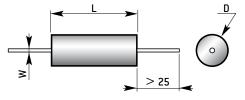
non-inductive Polyester wrapped Epoxy resin sealed DIÉLECTRIQUE

Polycarbonate métallisé

TECHNOLOGIE

Autocicatrisable, non inductif Enrobé polyester: Obturé résine époxy

GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Operating temperature		−55°C +125°C		Température d'utilisation
Capacitance range		1000 pF – 22 μF		Gamme de capacités
Capacitance tolerances		± 20%, ± 10%, ± 5%, ± 2%, ± 19	%	Tolérances sur capacité
Rated voltage range	Class A or B	40 V – 400 V	Classe A ou B	Gamme de tensions
	Class C	63 V – 630 V	Classe C	
D. F. Tg δ at 1 kHz	for $C_R \le 1 \mu F$	≤ 20.10 ⁻⁴	pour $C_R \le 1 \mu F$	Tg δ à 1 kHz
D. F. Tg δ at 100 kHz	for $C_R > 1 \mu F$	≤ 15.10 ⁻⁴	pour C _R > 1 <i>μ</i> F	Tg δ à 100 kHz
Insulation resistance	for $C_R \leq 0.22 \mu F$	\geq 50000 M Ω	pour $C_R \leq 0,22 \mu F$	Résistance d'isolement
	for $C_R > 0.22 \mu F$	≥ 10000 MΩ. µ F	pour C _R > 0,22 μF	
Test voltage		1,6 U _{RC}		Tension de tenue
Insulation between leads and case		\geq 50000 M Ω		Isolement entre bornes réunies et masse


Data sheet on request. Please consult our Sales Department. / Fiche technique sur demande. Consulter notre Service Commercial.

EK 8 (T) - MK 12 (T)

Axial leads Models EK 8 and MK 12

B 64 and P 72 S

Sorties axiales Modèles EK 8

et MK 12 B 64 et P 72 S

DIELECTRIC

EK 8:

Polycarbonate film-foil MK 12:

Metallized polycarbonate

Toption (metallized P.P.S.) on request

TECHNOLOGY

Non-inductive Polyester wrapped Epoxy resin sealed

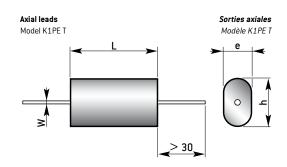
DIÉLECTRIQUE

EK 8 : Polycarbonate à armatures métalliques Polycarbonate métallisé

Option T (P.P.S. métallisé) sur demande

TECHNOLOGIE

Non inductif Enrobé polyester Obturé résine époxy


GENERAL CHARACTERISTICS						CARACTÉRISTIQUES GÉNÉRALES
Operating temperature		• EK 8 - MK 12	-40°C +125°C	• EK 8 - MK 12		Température d'utilisation
Capacitance range		• MK 12	10 nF – 10 μF	• MK 12		Gamme de capacités
		• EK 8	100 pF – 10 nF	• EK 8		
Capacitance tolerances		• EK 8 - MK 12	± 20% à/to ±5%	• EK 8 - MK 12		Tolérances sur capacité
Rated voltage range		• MK 12	63 V – 400 V	• MK 12		Gamme de tensions
		• EK 8	100 V - 250 V	• EK 8		
D. F. Tg δ at 1 kHz	for $C_R \le 1 \mu F$	• EK 8 - MK 12	≤ 30.10 -4	• EK 8 - MK 12	pour $C_R \le 1 \mu F$	Tg δ à 1 kHz
D. F. Tg δ at 100 kHz	for $C_R > 1 \mu F$	• EK 8 - MK 12	≤ 100.10 ⁻⁴	• EK 8 - MK 12	pour C _R > 1 μ F	Tg δ à 10 kHz
Insulation resistance						Résistance d'isolement
• EK 8 - MK 12	for $C_R \le 10 \text{ nF}$		≥50000 MΩ		pour $C_R \le 10 \text{ nF}$	• EK 8 - MK 12
	for 10 nF \leq C _R \leq 0,33 μ F		≥30000 MΩ.µF		pour 10 nF $\leq C_R \leq$ 0.33 μ F	
	for $C_R > 0.33 \mu F$		≥10000 MΩ.μF	,	pour C _R > 0,33 μF	
Insulation resistance	for $C_R \le 0,22 \mu F$		≥50000 MΩ		pour $C_R \le 0,22 \mu F$	Résistance d'isolement
• B 64 - P 72 S	for $C_R > 0.22 \mu F$		≥10000 MΩ.μF		pour C _R > 0,22 μF	• B 64 - P 72 S
Test voltage	•	• MK 12 - P 72 S	1,6 U _{RC}	• MK 12 - P 72 S	·	Tension de tenue
		• EK 8	2,5 U _{RC} 1000 pF	• EK 8		
Insulation between leads and car	se		≥ 50000 MΩ			Isolement entre bornes réunies et masse

Data sheet on request. Please consult our Sales Department. / Fiche technique sur demande. Consulter notre Service Commercial.

K1PE T

DIELECTRIC

Metallized P.P.S.

TECHNOLOGY Self-healing, non-inductive. Flame retardant polyester wrapped.

Flame retardant resin sealed, UL 94 V-0 classification.
Tinned copper axial leads.

MARKING

EFD model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE P.P.S. métallisé.

TECHNOLOGIE Autocicatrisable, non inductif. Enrobé polyester auto-extinguible. Obturé résine auto-

Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure

extinguible, classement UL 94 V-0. Sorties axiales par fils

de cuivre étamé.

MARQUAGE

EFD modèle capacité tolérance tension nominale date-code

GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Operating temperature		-55°C +125°C		Température d'utilisation
D. F. Tg δ at 1 kHz	for $C_R \le 1 \mu F$	≤ 20.10 ⁻⁴	pour $C_R \le 1 \mu F$	Tg δ à 1 kHz
D. F. Tg δ at 100 kHz	for $C_R > 1 \mu F$	≤ 15.10 ⁻⁴	pour C _R > 1 μ F	Tg δ à 100 kHz
Insulation resistance	for C _R ≤ 0,22 <i>µ</i> F	≥ 50000 MΩ	pour C _R ≤ 0,22 μF	Résistance d'isolement
	for $C_R > 0,22 \mu F$	\geq 10000 M Ω . μ F	pour C _R > 0,22 μF	
Test voltage		1,6 U _{RC}		Tension de tenue
Category voltage at 125°C U _C		0,5 U _{RC}		Tension de catégorie à 125°C U _C
Insulation between leads and case		≥ 50000 MΩ		Isolement entre bornes réunies et masse

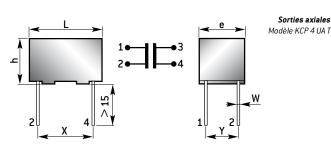
CAPACITA	NCE VALUES A	AND RATED V	OLTAGE (D.C	Z.] VALEURS DE CAPACITÉ ET DE TENSION (U _{RC})
	Dimensions (mm)			Class A or B : 400 V _{CC}
				Class C : 630 V _{CC}
		е		C _R
15,5	10,5	6,5	0,6	0,01 μF
20,5	9,5	5,5	0,8	0,015 <i>µ</i> F
20,5	10	6,5	0,8	0,022 <i>µ</i> F
20,5	11,5	8	0,8	0,033 <i>μ</i> F
20,5	12,5	9	0,8	0,047 μF
20,5	14,5	11,5	0,8	0,068 <i>µ</i> F
20,5	16,5	13,5	0,8	0,1 <i>µ</i> F
33,5	14	11	1	0,15 <i>µ</i> F
33,5	14,5	11	1	0,18 µF
33,5	18	12	1	0,22 µF
33,5	19,5	13,5	1	0,33 <i>µ</i> F
33,5	23,5	17,5	1	0,47 μF
33,5	29,5	19,5	1	0,68 μF
33,5	33,5	24,5	1	1μF
46,5	34,5	25,5	1	1,5 <i>µ</i> F
46,5	40,75	31,5	1	2,2 µF
46,5	47,5	38,5	1	3,3 µF
max	max	max	+10% - 0,05	± 1% - ± 2% - ± 5% - ± 10% - ± 20%
Tolerances on dimensions / Tolérances dimensionnelles			érances	Capacitance tolerances / Tolérances sur capacité

HOW TO ORDER						EXEMPLE DE CODIFIC	CATION À LA COMMANDE
Model	T: P.P.S option	UL : Optional feature flame retardant	W:RoHS	D: burning	Capacitance	Capa. tolerance	Rated voltage (V _{DC})
I/4 DE						. = .,	
K1PE	_	_	_	_	0,22 µF	± 5 %	400 V

For intermediate value, the dimensions are those of the immediately superior value

KCP 4 UA T

RoHS = W



DIELECTRIC Metallized P.P.S.

TECHNOLOGY

Plastic films + foils, Low inductance, Epoxy resin molded case, Tinned copper radial leads.

Axial leads Model KCP 4 UAT

MARKING

EFD model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

P.P.S. métallisé.

TECHNOLOGIE

Films plastiques + armatures, Faible inductance, Boîtier moulé résine époxy, Sorties radiales par fils de cuivre étamés..

MARQUAGE

EFD modèle capacité tolérance tension nominale date-code

GENERAL CHARACTERISTICS		CARACTÉRISTIQUES GÉNÉRALES
Operating temperature	−55°C +125°C	Température d'utilisation
D. F. Tg δ at 1 kHz	≤ 20.10 ⁻⁴	Tg δ à 1 kHz
Insulation resistance under 500 V / 1 min	≥ 30000 MΩ	Résistance d'isolement sous 500 V / 1 min
Rated DC voltage (U _{RC})	630 V _{DC} and/et 1000 V _{DC}	Tension nominale continue (U_{RC})
Dielectric withstanding voltage / 5 s	2000 V _{DC}	Tension de tenue diélectrique / 5 s
Voltage derating U _{RC} between 85°C and 125°C	−1,25%/°C	Derating sur la tension U _{RC} entre 85°C et 125°C

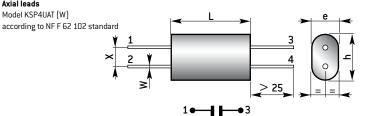
CAPACITANCE VALU	ES AND RATED VOLTAGE	(D.C.)		VALEURS DE CAPACITÉ ET DE TENSION (U _{RC})
	Dimensions (mm)		630 V _{CC}	1000 V _{CC}
	e	h	C _R	C _R
20	17	11		7,5 nF
15	16	11	10 nF	
33	17	11		15 nF
20	17	11	20 nF	
33	18	14		30 nF
33	17	11	40 nF	
33	27	17		60 nF
33	18	14	77,7 nF	
max	max	max	± 2	% - ± 5%
Tolerances on o	limensions / Tolérances	dimensionnelles	Capacitance tolerance	s / Tolérances sur capacité
For intermediate valu	e, the dimensions are those	e of the immediately supe	rior value Toute valeur intermédia	ire est exécutée dans les dimensions de la valeur immédiatement supérieure

LEAD SPACINGS	LEAD SPACINGS ENTRAXES DES BOITI								
	Cases / Boitiers		v	v	W				
L			X		vv v				
15	16	11	10,16	5,08	0,6				
20	17	11	15,24	5,08	0,8				
33	17	11	27,94	5,08	0,8				
33	18	14	27,94	5,08	0,8				
33	27	17	27,94	10,16	0,8				
max	max	max	± 0,5%	± 0,5%	+10% -0,05				

Tolerances on dimensions / Tolérances dimensionnelles

For intermediate value, the dimensions are those of the immediately superior value

HOW TO ORDER EXEMPLE DE CODIFICATION À LA COMMANDI										
Model	T: P.P.S option	W:RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})					
KCP 4 UA	-	-	10 nF	± 2 %	630 V					
Modèle	T: Option P.P.S.	W : RoHS	Capacité	Tol. sur capa.	Tension nom. (V _{CC})					



KSP 4 UA T

SAFETY CAPACITORS / CONDENSATEURS DE SÉCURITÉ

Sorties axiales Modèles KSP4UAT (W) conformes à la norme NF F 62 102

Axial leads Model KSP4UAT (W)

DIELECTRIC

Metallized P.P.S

TECHNOLOGY

Plastic film with foils Non inductive Polyester wrapped, epoxy resin sealed Tinned copper axial leads.

MARKING

EFD model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

P.P.S. métallisé

TECHNOLOGIE

Film plastique à armatures Non inductif Enrobé polyester, obturé résine époxy Sorties axiales par fils de cuivre étamé

MARQUAGE

EFD modèle capacité tolérance tension nominale date-code

GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Operating temperature		−55°C +85°C		Température d'utilisation
D. F. Tg δ at 1 kHz	for $C_R \le 1 \mu F$	≤ 20.10 ⁴	$pour C_R ≤ 1 μF$	Tg δ à 1 kHz
D. F. Tg δ at 100 kHz	for $C_R > 1 \mu F$	≤ 15.10 ⁴	pour $C_R > 1 \mu F$	Tg δ à 100 kHz
Insulation resistance	for $C_R \le 0.22 \mu\text{F}$	≥ 25000 MΩ	pour $C_R \le 0,22 \mu\text{F}$	Résistance d'isolement
Test voltage		1,6 U _{RC}		Tension de tenue

CAPACITANCE VALUES AND	RATED	VOLTAG	E (D.C.)													VA	LEURS D	E CAPAC	ITÉ ET DI	ETENSIC	N (U _{RC}
Dimensions (mm)				400 V					630 V					1000 V					1500 V		
Capacité (µF)				е	W	Х	L	h	е	W	Х		h	е	W	Х			е	W	
0,01												16	12	9	0,6	5,08					
0,015							16	12	9	0,6	5,08	21	12	9	0,8	5,08					
0,022							21	12	9	0,8	5,08	21	15	11	0,8	5,08					
0,033		16	12	9	0,6	5,08	21	13	10	0,8	5,08	34	12	9	0,8	5,08					
0,047		21	12	9	0,8	5,08	34	12	9	0,8	5,08	34	14	10	0,8	5,08					
0,068		21	13	10	0,8	5,08	34	14	10	0,8	5,08	34	16	13	0,8	7,62					
0,1		21	17	13	0,8	7,62	34	15	11	0,8	7,62	34	19	15	0,8	7,62	50	28	12	1	12,7
0,168																	50	33	18	1	12,7
0.200																	50	35	20	1	12.7

Tolerances on dimensions / Tolérances dimensionnelles \pm 2

 \pm 1% - \pm 2% - \pm 5% - \pm 10% - \pm 20% Capacitance tolerances / Tolérances sur capacité

For intermediate value, the dimensions are those of the immediately superior value

HOW TO ORDER				EXEMPLE D	E CODIFICATION A LA COMMANDE
Model	T: P.P.S option	W: RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})
KSP 4 UA	-	-	0,047 μF	±2%	630 V
Modèle	T: Option P.P.S.	W : RoHS	Capacité	Tol. sur capa.	Tension nom. (V_{CC})

SUMMARY SOMMAIRE

General information on metallized polyester	28-29
Metallized polyester capacitors data sheets	
General information on capacitors for H.F. Switch Mode Power Supplies	
Capacitors for H.F. Switch Mode Power Supplies data sheets	38
General information on PHM 912	53
PHM 912 data sheets	

Généralités sur les condensateurs polyester métallisé	.28-29
Feuilles particulières des condensateurs polyester métallisé	30
Généralités sur les condensateurs pour alimentations à découpage H.F 36	-37-38
Feuilles particulières des condensateurs pour alimentations à découpage H.I	·38
Généralités sur le PHM 912	53
Feuilles particulières des PHM 912	54

TALLIZED POLYESTER CAPACITORS				CONDENSATEURS POLYES	TER MÉTALLISI
Commercial type Appellation commerciale	Standard reference Modèle normalisé	Capacitance Capacité	Rated voltage / Ten		Page
			U _{RC}	U _{RA}	
PM 50	CPM 50	1000 pF - 22 μF	40 V - 630 V		30
PM 51	CPM 51	1000 pF - 22 μF	40 V - 630 V		30
PM 52	CPM 52	1000 pF - 22 μF	40 V - 630 V		30
PM 53	CPM 53	1000 pF - 22 μF	40 V - 630 V		30
PM 60	CPM 60	1000 pF - 22 μF	40 V - 630 V		30
PM 61	CPM 61	1000 pF - 22 μF	40 V - 630 V		30
PM 62	CPM 62	1000 pF - 22 μF	40 V - 630 V		30
PM 63	CPM 63	1000 pF - 22 μF	40 V - 630 V		30
PM 7	CPM 7	1000 pF - 10 μF	63 V - 630 V		31
PM 8	CPM 8	1000 pF - 10 μF	63 V - 630 V		31
PM 9	CPM 9	1000 pF - 10 μF	63 V - 630 V		31
PM 10	CPM 10	1000 pF - 10 μF	63 V - 630 V		31
PM 12	CPM 12	1000 pF - 10 μF	63 V - 630 V		31
PM 13	CPM 13	1000 pF - 10 μF	63 V - 630 V		31
PM 14	CPM 14	1000 pF - 10 μF	63 V - 630 V		31
PM 15	CPM 15	1000 pF - 10 μF	63 V - 630 V		31
PM 720	CPM 72	82 pF - 10 μF	100 V - 630 V		32
PM 730	CPM 73	82 pF - 10 <i>μ</i> F	100 V - 630 V		32
PM 21		1000 pF - 22 μF	40 V - 400 V		33
PM 31		1000 pF - 22 μF	40 V - 400 V		33
PM 41		1000 pF - 22 μF	40 V - 400 V		33
MPA HT		1000 pF - 4,7 μF	1000 V - 15000 V	250 V - 2500 V	34
MRA HT		1000 pF - 4,7 μF	1000 V - 15000 V	250 V - 2500 V	34
BIK-X2		1000 pF - 470 nF		250 V	35
BIK-Y		1000 pF - 100 nF		250 V	35
BIK-CR		1000 pF - 6,8 μF	400 V	250 V	35
PACITORS FOR H.F. SWITCH MODE PO	WER SUPPLIES		CONDEN	ISATEURS POUR ALIMENTATIONS À	DÉCOUPAGE
PM 96		33 nF - 100 μF	25 V - 630 V		39
PM 96 T		33 nF - 100 μF	25 V - 630 V		39
MKT		33 nF - 100 μF	50 V - 630 V		40
PM 90 RT		0,68 μF - 39 μF	50 V - 400 V		41
PM 89		0,22 μF - 47 μF	50 V - 500 V		42
PM 89 R		0,1 μF - 47 μF	50 V - 500 V		43
PM 90		0,22 μF - 150 μF	50 V - 630 V		44
PM 90 R 1		0,22 μF - 150 μF	50 V - 630 V		45
PM 90 R 2		0,22 μF - 150 μF	50 V - 630 V		45
PM 94		0,1 μF - 47 μF	50 V - 400 V		46-4
PM 94 N		0,1 μF - 47 μF	50 V - 400 V		46-4
PM 907		0,22 μF - 100 μF	63 V - 1250 V		48
PM 907 S		0,22 μF - 100 μF	63 V - 1250 V		48
PM 907 N		0,22 μF - 100 μF	63 V - 1250 V		49
PM 907 R1		0,22 μF - 100 μF	63 V - 1250 V		50
PM 907 R2		0,22 μF - 100 μF	63 V - 1250 V		50
PM 948		0,022 μF - 8,2 μF	63 V - 630 V		51-57
PM 948 N		0,022 μF - 8,2 μF	63 V - 630 V		51-5
PHM 912		0,022 με - 6,2 με	250 V - 1000 V		51-5
		υ, ει μι΄ - σο μτ	520 A - 1000 A		
		U 3211E 6011E	250 // 1000 //		FF
PHM 912 N PHM 912 R1		0,27 μF - 68 μF 0,27 μF - 68 μF	250 V - 1000 V 250 V - 1000 V		55 56

GENERAL INFORMATION *GÉNÉRALITÉS*

METALLIZED POLYESTER CAPACITORS

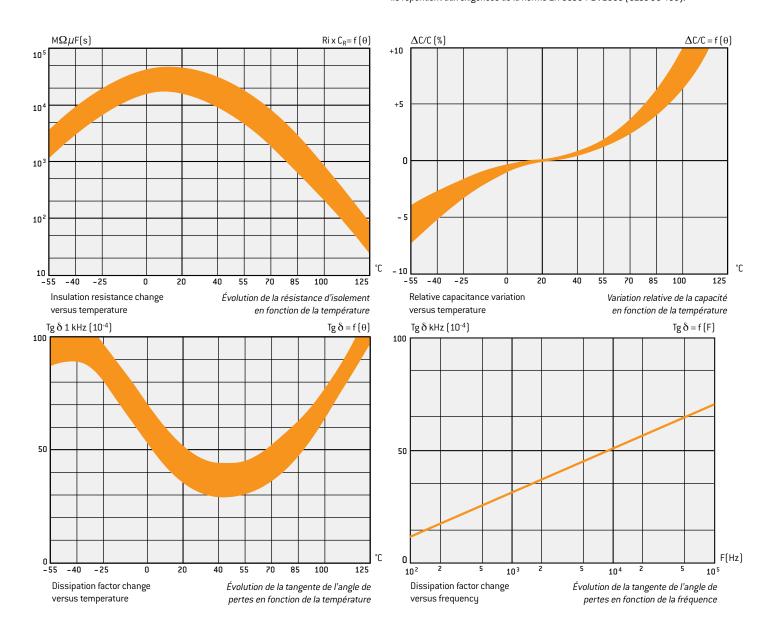
One of the principle characteristics of these capacitors is their small size. This is due to the properties of the film used: high dielectric constant and high dielectric strength.

They also have excellent self-healing properties.

They may be used in A.C. sinewave or non sinewave applications.

They comply with the requirements of EN 60384-2: 2005 (CECC 30 400) standard.

CONDENSATEURS POLYESTER METALLISÉ


La caractéristique fondamentale des condensateurs réalisés suivant cette technologie est leur faible encombrement.

Cette caractéristique est due aux propriétés du film utilisé : forte constante diélectrique et forte rigidité diélectrique.

De plus, ils ont d'excellentes propriétés d'autocicatrisation.

Ils peuvent également être utilisés dans des applications alternatives sinusoïdales ou non sinusoïdales.

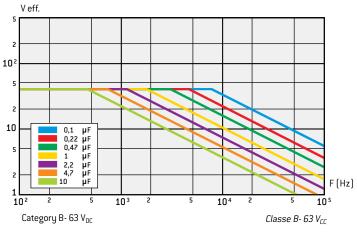
Ils répondent aux exigences de la norme EN 60384-2 : 2005 (CECC 30 400).

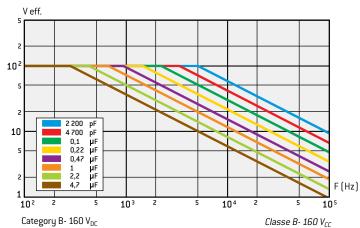
Permissible A.C. voltage

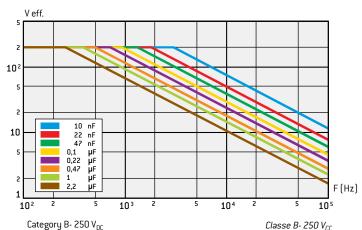
The table given below shows the relation between D.C. rated voltage $\rm U_{RC}$ and A.C. sinewave voltage at 50 Hz $\rm U_{RA}$:

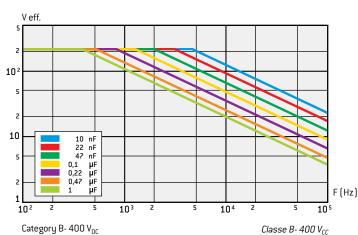
U _{RC} (V _{CC})	63	160	250	400
U _{RA} (V _{CA})	30	100	200	220

Tension efficace admissible


Le tableau ci-dessous donne la correspondance entre la tension nominale continue U_{RC} et la tension alternative efficace sinusoïdale à 50 Hz U_{RA} :


Beyond this frequency, the curves (page 29) show the A.C. permissible voltage versus frequency for different capacitances and operating voltage values.


Au-delà de cette fréquence, les courbes (page 29) donnent la tension efficace admissible en fonction de la fréquence et pour différentes valeurs de capacité et de tension de service.



GENERAL INFORMATION GÉNÉRALITÉS

U_{RC}(%)

50

-55

20

85

125

Operating temperature range from -55°C at $+125^{\circ}\text{C}$: with a voltage derating of 50 % at 125°C of the rated voltage defined at 85°C (see curve opposite).

Gamme de températures d'utilisation de –55°C à +125°C: avec un derating de 50 % à 125°C sur la tension nominale définie à 85°C (voir courbe ci-contre).

Non-sinewave signals

Metallized polycarbonate dielectric capacitors are unable to accept signals whose pulse rise time dV/dt exceed certain limits.

These are in function of the capacitor geometry and of the dielectric thickness, and hence, of the rated voltage. The limits in $V/\mu s$ are given in the table opposite:

The limits in $V/\mu s$ are given in the table opposite.

For operating peak voltages inferior to the rated voltage (Up. to p. < U_{RC}) the given dV/dt values may be multiplied by the U_{RC} /Up. to p.

	LEAD SPACING (mm) ENTRA										
U _{RC}	5,08	7,62	10,16		22,86	27,94					
40 V	12	5									
63 V	25	10	8	5	3	2					
100 V	30	20	12	8	5	3					
250 V	40	30	20	12	8	5					
400 V	50	40	30	20	10	8					

Signaux non sinusoïdaux

Les condensateurs à diélectrique polycarbonate métallisé ne peuvent accepter des signaux dont les variations de tension dV/dt dépassent certaines limites.

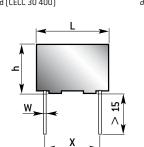
Celles-ci sont fonction de la géométrie du condensateur et de l'épaisseur du diélectrique, donc de la tension nominale. Les limites, en V/µs sont indiquées dans le tableau ci-contre:

Les limites en V/µs sont indiquées dans le tableau ci-contre.

Pour les tensions d'utilisation crête à crête inférieures à la tension nominale $\{Uc\ à\ c < U_{RC}\ \}$, les valeurs de dV/dt indiquées peuvent être multipliées par le facteur U_{RC} /Uc à c.

PM 50 - PM 60

RoHS = W

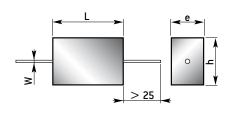


DIELECTRIC

Metallized polyester

TECHNOLOGY
Self-healing,
non-inductive
Epoxy resin molded

Radial leads Model CPM 50 to NF C 83 151 standard (CECC 30 400)


MARKING

model capacitance tolerance rated voltage date-code

Sorties radiales Axial leads

Modèle CPM 50 Model CPM 60 de la norme NF C 83 151 to CCTU 02-14 A standard

IG DIÉLECTRIQUE

Polyester métallisé

TECHNOLOGIE

Autocicatrisable, non inductif Moulé résine époxy

MARQUAGE

modèle capacité tolérance tension nominale date-code

GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Climatic category		55/125/56		Catégorie climatique
D. F. Tg δ at 1 kHz	for $C_R \le 1 \mu\text{F}$	≤ 80.10 ⁻⁴	pour $C_R \le 1 \mu\text{F}$	Tg δ à 1 kHz
	for $C_R > 1 \mu F$	≤ 100.10 ⁻⁴	$pour C_R > 1 \mu F$	
Insulation resistance	for $C_R \le 0.33 \mu\text{F}$ and $U_R > 100 \text{V}$	≥ 30000 MΩ	pour $C_R \le 0.33 \mu\text{F}$ et $U_R > 100 \text{V}$	Résistance d'isolement
	for $C_R \le 0.33 \mu\text{F}$ and $U_R \le 100 \text{V}$	≥ 15000 MΩ	pour $C_R \le 0.33 \mu\text{F}$ et $U_R \le 100 \text{V}$	
	for $C_R > 0.33 \mu\text{F}$ and $U_R > 100 \text{V}$	≥ 10000 MΩ. µ F	pour $C_R > 0.33 \mu\text{F}$ et $U_R > 100 \text{V}$	
	for $C_R > 0.33 \mu\text{F}$ and $U_R \le 100 \text{V}$	≥ 5000 MΩ. µ F	pour $C_R > 0.33 \mu\text{F}$ et $U_R \le 100 \text{V}$	
Test voltage		1,6 U _{RC}		Tension de tenue
Insulation between leads and case		≥ 30000 MΩ		Isolement entre bornes réunies et masse

ALTERNATIVE MODELS				MODÈLES ASSOCIÉS
Climatic category	55/125/21	40/085/56	40/085/21	Catégorie climatique
Radial leads	PM 51	PM 52	PM 53	Sorties radiales
Axial leads	PM 61	PM 62	PM 63	Sorties axiales

CAPACITANO	E VALUES A	ND RATED VOLTA	GE (D.C.)													VAL	EURS D	E CAPA	CITÉ E1	DE TE	NSION (U_{RC}
Dimensions		classe A ou B classe C				40 63			63 10	0 V			60 V 50 V		250 V 400 V		400 V 630 V					
					C _R r	nin	C _R max	C _R n	nin	C _R ma		C _R min	C _R	max	C _R n	nin	C _R n	nax	C _R n		C _R m	ıax
11	*9,5	*5	7,62	0,6											3900) pF	8200	pF	1000	pF	3300	рF
14	8	5	10,16	0,6	5600	0 pF	0,1 <i>μ</i> F	2700	0 pF	47000	pF	10 000 pF	220	00 pF	1000	0 pF	1000	0 pF	3900	pF	4700	рF
14	11	6,5	10,16	0,6	0,12	μF	0,22 <i>μ</i> F	5600	0 pF	0,1	μF	27000 pF	470	00 pF	1200	0 pF	2200	0 pF	5600	pF	1000	0 pF
18	11	6,5	15,24	0,8	0,27	μF	0,47 μF	0,12	μF	0,22	μF	56000 pF	0,1	μF	2700	0 pF	4700	0 pF	1200	0 pF	2200	0 pF
18	12	8	15,24	0,8	0,56	μF	1 μF	0,27	μF	0,47	μF	0,12 μF	0,2	2 μF	5600	0 pF	0,1	μF	27 00	0 pF	4700	0 pF
18	16	9,5	15,24	0,8	1,2	μF	1,5 μF	0,56	μF	0,68	μF	0,27 μF	0,33	β <i>μ</i> F	0,12	μF	0,15	μF	5600	0 pF	6800	0 pF
18	16	10	15,24	0,8	1,8	μF	2,2 μF	0,82	μF	1	μF	0,39 μF	0,47	μΕ	0,18	μF	0,22	μF	8200	0 pF	0,1	μF
32	15	9	27,94	1	2,7	μF	3,3 μF	1,2	μF	1,5	μF	0,56 μF	0,68	3 μF	0,27	μF	0,33	μF	0,12	μF	0,15	μF
32	16	10	27,94	1	3,9	μF	4,7 μF	1,8	μF	2,2	μF	0,82 μF	1	μF	0,39	μF	0,47	μF	0,18	μF	0,22	μF
32	18	12	27,94	1	5,6	μF	6,8 μF	2,7	μF	3,3	μF	1,2 μF	1,5	μ F	0,56	μ F	0,68	μ F	0,27	μ F	0,33	μF
32	21	13,5	27,94	1	8,2	μF	10 μF	3,9	μF	4,7	μF	1,8 μF	2,2	μF	0,82	μF	1	μF	0,39	μF	0,47	μF
32	26	16	27,94	1	12	μF	15 μF	5,6	μF	6,8	μF	2,7 μ	3,3	μ F	1,2	μ F	1,5	μ F	0,56	μ F	0,68	μF
32	29	20	27,94	1	18	μF	22 μF	8,2	μF	10	μF	3,9 μF	4,7	μF	1,8	μF	2,2	μF	0,82	μF	1	μF
± 0,5	± 0,5	± 0,5	± 0,5	+10% -0,05	_							± 20% - :										

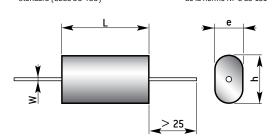
Tolerances on dimensions Tolérances dimensionnelles Capacitance tolerances / Tolérances sur capacité

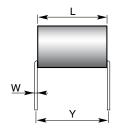
* For models with axial leads : h = 8 - e = 5,5 * Pour les modèles à sorties axiales : h = 8 - e = 5,5

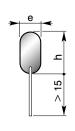
HOW TO ORDER		HOW TO ORDER EXEMPLE DE CODIFICATION A LA COMMAND													
Model	B,C: Class	W: RoHS	F: Quality level	Capacitance	Capa. tolerance	Rated voltage (V _{DC})	CECC+ : reliability level								
PM 50	-	-	-	0,1 µF	± 1%	63 V	_								
Modèle	B,C: Classe	W: RoHS	F: Niveau de qualité	Capacité	Tol. sur capa.	Tension nom. (V _{CC})	CECC+ : Niveau de fiabilité								

PM 7 - PM 12

RoHS = W




Axial leads


Model CPM 7 to NF C 83 151

standard (CECC 30 400)

Sorties axiales Modèle CPM 7 de la norme NF C 83 151 Radial leads Model CPM 12 to NF C 83 151 standard (CECC 30 400) Sorties radiales Modèle CPM 12 de l'ex-norme NF C 83 151

DIELECTRIC

Metallized polyester

TECHNOLOGY

Self-healing, non-inductive Polyester wrapped Epoxy resin sealed

MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

Polyester métallisé

TECHNOLOGIE

Autocicatrisable, non inductif Enrobé polyester Obturé résine époxy

MARQUAGE

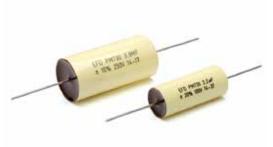
modèle capacité tolérance tension nominale date-code

GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Climatic category		55/125/56		Catégorie climatique
D. F. Tg δ at 1 kHz	for $C_R \le 1 \mu F$	≤80.10 ⁻⁴	pour $C_R \le 1 \mu\text{F}$	Tg δ à 1 kHz
	for $C_R > 1 \mu F$	≤ 100.10 ⁻⁴	pour $C_R > 1 \mu F$	
Insulation resistance	for $C_R \le 0.33 \mu\text{F}$ and $U_R > 100 \text{V}$	≥ 30000 MΩ	pour $C_R \le 0.33 \mu\text{F}$ et $U_R > 100 \text{V}$	Résistance d'isolement
	for $C_R \le 0.33 \mu\text{F}$ and $U_R \le 100 \text{V}$	≥ 15000 MΩ	pour $C_R \le 0.33 \mu\text{F}$ et $U_R \le 100 \text{V}$	
	for $C_R > 0.33 \mu\text{F}$ and $U_R > 100 \text{V}$	≥ 10000 MΩ. µ F	pour $C_R > 0.33 \mu\text{F}$ et $U_R > 100 \text{V}$	
	for $C_R > 0.33 \mu\text{F}$ and $U_R \le 100 \text{V}$	≥ 5000 MΩ. µ F	pour $C_R > 0.33 \mu\text{F}$ et $U_R \le 100 \text{V}$	
Test voltage		1,6 U _{RC}		Tension de tenue
Insulation between leads and case		≥ 30000 MΩ		Isolement entre bornes réunies et masse

ALTERNATIVE MODELS				MODÈLES ASSOCIÉS
Climatic category	55/125/21	40/085/56	40/085/21	Catégorie climatique
Axial leads	PM 8	PM 9	PM 10	Sorties axiales
Radial leads	PM 13	PM 14	PM 15	Sorties radiales

mensions		asse B asse C			63 10		16 25		25 40		40 63	
					C _R min	C _R max						
10	5,5	2,5	7,62	0,6					3900 pF	8200 pF	1000 pF	3300 pF
13	5	2,5	10,16	0,6	27000 pF	82000 pF	15000 pF	22000 pF	10000 pF	10000 pF	3900 pF	4700 pF
13	6	3	10,16	0,6	0,1 <i>μ</i> F	0,1 <i>μ</i> F	27000 pF	47000 pF	12000 pF	22000 pF	5600 pF	10000 pF
18	6	3,5	15,24	0,8	0,12 <i>μ</i> F	0,22 μF	56000 pF	0,1 μF	27000 pF	47000 pF	12000 pF	22000 pF
18	7,5	4,5	15,24	0,8	0,27 μF	0,33 μF	0,12 μF	0,15 μF	56000 pF	68000 pF	27000 pF	39000 pF
18	8,5	5,5	15,24	0,8	0,39 μ F	0,47 μF	0,18 <i>μ</i> F	0,22 μF	82 000 pF	0,1 μF	47000 pF	47000 pF
18	12,5	6,5	15,24	0,8	0,56 μF	0,68 μF	0,27 μF	0,33 μF	0,12 <i>μ</i> F	0,15 <i>μ</i> F	56000 pF	68000 pF
18	13,5	7	15,24	0,8	0,82 μ F	1 μF	0,39 <i>μ</i> F	0,47 μF	0,18 <i>μ</i> F	0,22 μF	82 000 pF	0,1 μF
31	10	6	27,94	1	1,2 μF	1,5 μF	0,56 μF	0,68 μF	0,27 μF	0,39 μF	0,12 μF	0,15 μF
31	12	7	27,94	1	1,8 μF	2,2 μF	0,82 μF	1 μF	0,47 μF	0,47 μF	0,18 μF	0,22 μF
31	13	10	27,94	1	2,7 μF	3,3 μF	1,2 μF	1,5 μF	0,56 <i>μ</i> F	0,68 μF	0,27 μF	0,33 μF
31	18	11,5	27,94	1	3,9 μF	4,7 μF	1,8 μF	2,2 μF	0,82 <i>μ</i> F	1 μF	0,39 μF	0,47 μF
31	20	12,5	27,94	1	5,6 μF	6,8 μF	2,7 μF	3,3 μF	1,2 μF	1,5 μF	0,56 μF	0,68 μF
31	24	14,5	27,94	1	8,2 <i>μ</i> F	10 μF	3,9 μF	4,7 μF	1,8 μF	2,2 μF	0,82 μF	1 μF

Tolerances on dimensions Tolérances dimensionnelles Capacitance tolerances / Tolérances sur capacité


* For models with axial leads : h = 8 · e = 5,5
*Pour les modèles à sorties axiales : h = 8 · e = 5,5

HOW TO ORDER						EXEMPLE DE CODIFICATION A LA COMMAI					
Model	B,C : Class	W: RoHS	F: Quality level	Capacitance	Capa. tolerance	Rated voltage (V _{DC})	CECC+ : reliability level				
PM 7	-	-	_	3,3 µF	± 10%	63 V	_				
Modèle	B,C : Classe	W: RoHS	F: Niveau de qualité	Capacité	Tol. sur capa.	Tension nom. (V _{CC})	CECC+ : Niveau de fiabilité				

PM 730 - PM 720

RoHS = W

Axial leads

Models CPM 73 and CPM 72

to NF C 83 151 standard
(CECC 30 400)

Sorties axiales

Modèles CPM 73 et CPM 72

de la norme NF C 83 151

DIELECTRIC

Metallized polyester

TECHNOLOGY

Self-healing, non-inductive Polyester wrapped Epoxy resin sealed

MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

Polyester métallisé

TECHNOLOGIE

Autocicatrisable, non inductif Enrobé polyester Obturé résine époxy

MARQUAGE

modèle capacité tolérance tension nominale date-code

Climatic category	PM 730	55/100/56	PM 730	Catégorie climatique
	PM 720	55/100/21	PM 720	
D. F. Tg δ at 1 kHz	for $C_R \le 1 \mu F$	≤ 80.10 ⁻⁴	$pour C_R ≤ 1 μF$	Tg δ à 1 kHz
	for $C_R > 1 \mu F$	≤ 100.10 ⁻⁴	pour $C_R > 1 \mu F$	
Insulation resistance	for $C_R \le 0.33 \mu\text{F}$ and $U_R > 100 \text{V}$	≥ 30000 MΩ	pour $C_R \le 0.33 \mu\text{F}$ et $U_R > 100 \text{V}$	Résistance d'isolement
	for $C_R \le 0.33 \mu\text{F}$ and $U_R \le 100 \text{V}$	≥ 15000 MΩ	pour $C_R \le 0.33 \mu\text{F}$ et $U_R \le 100 \text{V}$	
	for $C_R > 0.33 \mu\text{F}$ and $U_R > 100 \text{V}$	≥ 10000 MΩ. µ F	pour $C_R > 0.33 \mu\text{F}$ et $U_R > 100 \text{V}$	
	for $C_R > 0.33 \mu\text{F}$ and $U_R \le 100 \text{V}$	≥ 5000 MΩ. µ F	pour $C_R > 0.33 \mu\text{F}$ et $U_R \le 100 \text{V}$	
Test voltage		1,6 U _{RC}		Tension de tenue
Insulation between leads and case		≥ 30000 MΩ		Isolement entre bornes réunies et masse

Dimensions	s (mm)	classe A ou B classe C	10	0 V	25	50 V	40	10 V	63	O V
		е	C _R min	C _R max						
12	6,25	0,6	27000 pF	0,1 <i>μ</i> F	8200 pF	22000 pF	3900 pF	6800 pF	82 pF	3300 pF
14,5	5	0,6			27000 pF	33000 pF	8200 pF	15000 pF	3900 pF	6800 pF
14,5	6,25	0,6	0,12 μF	0,15 μF	39000 pF	47000 pF	18000 pF	22000 pF	8200 pF	10000 pl
14,5	7,5	0,6	0,18 <i>μ</i> F	0,22 <i>µ</i> F	56000 pF	0,1 <i>μ</i> F	27000 pF	33000 pF	12000 pF	22000 pl
14,5	8,75	0,6	0,27 μF	0,33 μF			39000 pF	47000 pF		
20	7,5	0,8	0,39 μ F	0,47 μF	0,12 <i>μ</i> F	0,22 μF	56000 pF	68000 pF	27000 pF	33000 p
20	8,75	0,8	0,56 <i>μ</i> F	0,68 <i>µ</i> F	0,27 μF	0,33 μF	82000 pF	0,1 μF	39000 pF	47000 pl
20	10	0,8	0,82 μ F	1 μF	0,39 μF	0,47 μF	0,12 <i>μ</i> F	0,15 μ F	56 000 pF	68000 p
27,5	8,75	0,8					0,18 <i>μ</i> F	0,22 μ F	82000 pF	0,1 μ
27,5	10	0,8	1,2 μF	1,5 <i>μ</i> F	0,56 μF	0,68 μ F	0,27 μF	0,33 μ F		
27,5	11,25	0,8	1,8 <i>μ</i> F	2,2 μF					0,12 μ F	0,15 μ
27,5	12,5	0,8	2,7 μF	3,3 <i>μ</i> F	0,82 μF	1 μF	0,39 <i>μ</i> F	0,47 μF	0,18 <i>μ</i> F	0,22 μ
33	12,5	0,8			1,2 μF	1,5 μF	0,56 μ F	0,68 μ F		
33	13,75	0,8	3,9 μ F	4,7 μF					0,27 μF	0,33 μ
33	15	0,8			1,8 μF	2,2 μF	0,82 μ F	1 μF	0,39 μF	0,47 μ
33	16,25	0,8	5,6 <i>μ</i> F	6,8 <i>μ</i> F						
33	17,5	0,8			2,7 μF	3,3 <i>μ</i> F	1,2 μF	1,5 <i>μ</i> F		
33	18,75	0,8	_						0,56 μF	0,68 μ
33	20	0,8	8,2 <i>μ</i> F	10 μF	3,9 <i>μ</i> F	4,7 μF				
33	21,25	0,8					1,8 μF	2,2 <i>μ</i> F	0,82 μF	1 μ
max	max	+10% - 0,05				+ 20% +	10% - ± 5%			

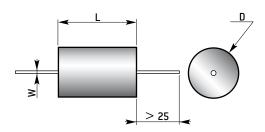
 \pm 20% \cdot \pm 10% \cdot \pm 5% Capacitance tolerances / *Tolérances sur capacité*

Tolérances dimensionnelles

* For models with axial leads : h = 8 - e = 5,5

* Pour les modèles à sorties axiales : h = 8 - e = 5,5

HOW TO ORDER			EXE	MPLE DE CODIFICATION À LA COMMANDE
Model	W: RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})
PM 720	_	0,1 μF	± 20%	400 V
Modèle	W: RoHS	Capacité	Tol. sur capa.	Tension nom. (V _{CC})



Tolerances on dimensions

PM 21 - PM 31 - PM 41

Axial leads Models CPM 21 - 31 - 41

Sorties axiales

Modèles CPM 21 - 31 - 41

DIELECTRIC

Metallized polyester

TECHNOLOGY Self-healing, non-inductive Polyester wrapped Epoxy resin sealed

model capacitance tolerance rated voltage date-code

MARKING

DIÉLECTRIQUE

Polyester métallisé

TECHNOLOGIE Autocicatrisable, non inductif Enrobé polyester Obturé résine époxy

MARQUAGE

modèle capacité tolérance tension nominale date-code

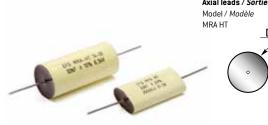
GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Operating temperature	PM 21 - 31	−55°C +125°C	PM 21 - 31	Température d'utilisation
	PM 41	-40°C +85°C	PM 41	
Capacitance range		1000 pF – 22 µ F		Gamme de capacités
Capacitance tolerances		± 20%, ± 10%, ± 5%		Tolérances sur capacité
Rated voltage range		40 V – 400 V		Gamme de tensions
D. F. Tg δ at 1 kHz	for C _R ≤ 1 μ F	≤ 70.10 ⁻⁴	$pour C_R ≤ 1 μF$	Tg δ à 1 kHz
	for $C_R > 1 \mu F$	≤ 50.10 ⁻⁴	pour $C_R > 1 \mu\text{F}$	
Insulation resistance	for C _R ≤ 0,22 μF	≥ 50000 MΩ	$pour C_R \le 0,22 \mu F$	Résistance d'isolement
	for $C_R > 0.22 \mu F$	≥ 10000 MΩ	pour $C_R > 0.22 \mu\text{F}$	
Test voltage		1,6 U _{RC}		Tension de tenue
Insulation between leads and case		≥ 50000 MΩ		Isolement entre bornes réunies et masse

CAPACITANI	CE VALUES ANI	J RATED VOLT	AGE (D.C.)							VALEURS DE	CAPACITÉ ET DE	TENSION (U _R
Dimension	s (mm)		40	v	63	3 V	16	0 V	25	0 V	40	0 V
L	D	W	C _R min	C _R max	C _R min	C _R max	C _R min	C _R max	C _R min	C _R min C _R max		C _R max
10	4,5	0,6							3700 pF	8200 pF	1000 pF	3300 pl
13	4	0,6			30000 pF	47000 pF	10000 pF	15000 pF				
13	5	0,6			51000 pF	0,11 μF	16000 pF	51000 pF	9100 pF	24000 pF	3600 pF	11000 pl
18	5	0,8	0,24 <i>μ</i> F	0,47 μF	0,12 μF	0,22 μF	56000 pF	0,1 μF	27000 pF	47000 pF	12000 pF	22000 pl
18	6	0,8	0,51 μF	0,68 µF	0,24 μF	0,33 μF	0,11 <i>μ</i> F	0,15 μF	51000 pF	68000 pF	24000 pF	36000 pl
18	7	0,8	0,75 μF	1,1 μF	0,36 μF	0,47 μF	0,16 <i>μ</i> F	0,22 μF	75000 pF	0,1 μF	39000 pF	47000 pl
18	8,5	0,8	1,2 μF	1,5 μF	0,51 μF	0,68 μF	0,24 μF	0,33 μF	0,11 μF	0,15 μF	51000 pF	68000 pl
18	10,5	0,8	1,6 μF	2,2 μF	0,75 μF	1,2 μF	0,36 <i>μ</i> F	0,51 μF	0,16 μF	0,22 μF	75000 pF	0,11 μΙ
31	8,5	1	2,4 μF	3,3 <i>μ</i> F	1,3 μF	1,5 μF	0,56 μF	0,82 μF	0,24 μF	0,33 μF	0,12 <i>μ</i> F	0,16 μ
31	9,5	1	3,6 μF	4,7 μF	1,6 μF	2,2 μF	0,91 μF	1,1 μF	0,36 <i>μ</i> F	0,47 μF	0,18 <i>μ</i> F	0,22 μ
31	11,5	1	5,1 μF	6,8 μF	2,4 μF	3,3 μF	1,2 μF	1,5 μF	0,51 <i>μ</i> F	0,75 μF	0,24 μF	0,36 μ
31	14	1	7,5 μF	10 μF	3,6 μF	4,7 μF	1,6 μF	2,2 μF	0,82 μF	1 μF	0,39 <i>μ</i> F	0,51 μ
31	16,5	1	11 μF	15 μF	5,1 <i>μ</i> F	6,8 μF	2,4 μF	3,3 μF	1,1 μF	1,5 μF	0,56 <i>μ</i> F	0,68 μ
31	20	1	16 μF	22 μF	7,5 μF	10 μF	3,6 μF	4,7 μF	1,6 μF	2,2 μF	0,75 μF	1 μ
± 2	± 2	+10%						40% . 5%				

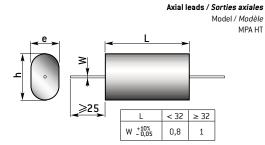
 \pm 20% - \pm 10% - \pm 5%

Tolerances on dimensions Tolérances dimensionnelles

Capacitance tolerances / Tolérances sur capacité


For intermediate value, the dimensions are those of the immediately superior value

HOW TO ORDER			EXE	MPLE DE CODIFICATION À LA COMMANDE
Model	W:RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})
PM 21	_	1 μF	± 5%	160 V
Modèle	W: RoHS	Capacité	Tol. sur capa.	Tension nom. (V_{CC})



MRA HT - MPA HT

RoHS = W

Axial leads / Sorties axiales ≥25 < 32 ≥ 32 W ^{+10%} _{-0,05} 0,8 1

DIELECTRIC

Metallized Polyester

TECHNOLOGY

Self-healing, non inductive Polyester wrapped Epoxy resin sealed

OPTIONAL FEATURE
For application in oil
Ref.: MRA HT H - MPA HT H L, D, e, h dimensions are increased by 2 mm

MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE Polyester métallisé

TECHNOLOGIE

Autocicatrisable, non inductif Enrobé polyester Obturé résine époxy

OPTION
Pour utilisation dans l'huile
Réf.: MRA HT H - MPA HT H Les dimensions L, D, e, h sont augmentées de 2 mm

MARQUAGE

modèle capacité tolérance tension nominale date-code

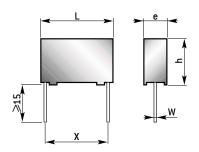
GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Operating temperature		− 55°C + 85°C		Température d'utilisation
D. F. Tg δ at 1 kHz		≤ 100.10 ⁻⁴		Tg δ à 1 kHz
Insulation resistance under 500 V _{DC}	for C _R ≤ 0,33 μF	≥ 3000 MΩ	pour $C_R \le 0.33 \mu F$	Résistance d'isolement sous 500 V _{CC}
	for $C_R > 0.33 \mu F$	≥ 10000 MΩ µ F	pour $C_R > 0.33 \mu\text{F}$	
est voltage	≤ 10 kV	1,5 U _{RC} /1 mm	≤ 10 kV	Tension de tenue
	> 10 kV	1.2 U _{pc} /1 mm	> 10 kV	

Voltage / ension U _{RC}		100	O V _{CC}			160	O V _{CC}			250	O V _{CC}			400	O V _{CC}			630	O V _{CC}			1000	OO V _{CC}			1500	O V _{CC}	
Voltage / ension U _{RA}		250				330) V _{CA}			480	V _{CA}			630				120	D V _{CA}		1500 V _{CA}				2500 V _{CA}			
	D				D				D								D				D							
1 nF	7	19	5	10	7	19	5	10	10	19	7	14	10	26	7	14	10	38	7	14	12	50	8	15	20	70	7	21
1,5	7	19	5	10	7	19	5	10	10	19	7	14	12	26	7	14	10	38	7	14	12	50	8	15	20	70	8	23
2,2	7	19	5	10	7	19	5	10	10	19	7	14	12	26	9	16	10	38	7	14	12	50	8	15	20	70	10	25
3,3	7	19	5	10	7	19	5	10	10	19	7	14	13	32	9	16	12	38	8	15	15	50	10	17	22	70	13	28
4,7	8	19	6	13	8	19	6	13	10	19	7	14	15	32	11	18	14	38	9	16	16	50	12	19	25	70	16	31
6,8	9	19	6	13	9	19	6	13	10,5	32	7	14	15	32	11	18	16	38	11	18	18	50	14	21	30	70	20	35
10	9	19	6	13	9	19	6	13	10	32	7	14	15	32	11	18	18	38	13	23	22	50	16	26	34	85	18	34
15	10	19	7	14	9	32	5	11	10	32	7	14	12	45	6	13	22	38	16	26	20	75	10	19	34	85	23	38
22	11	19	7	14	9	32	5	11	10	32	7	14	12	45	6,5	13,5	25	38	18	31	22	75	12	22	40	85	29	44
33	11	19	7	14	9	32	6	13	11	32	8	15	14	45	8	15	30	38	22	36	25	75	15	26				
47	11	32	7	14	11	32	7	14	11	45	8	15	14	45	9,5	16,5	28	75	17	31	30	75	17	31				
68	11	32	7_	14	12	32	8	15	12	45	9	16	16	45	11,5	18,5	32	75	21	35	34	75	22	35				
0,1 μF	11	32	7	14	14	45	8	15	14	45	10	17	18	45	13	23	36	75	26	42	38	75	26	42	-			
0,15	12	32	8	15	16	45	10	17	18	45	13	20	22	45	16	26												
0,22	14	32	10	17	16	45	11	21	20	45	14	24	26	45	19	32												
0,33	16	32 45	13 12	20 19	20	45 45	14 15	24 29	24 28	45 45	18 20	28 34																
0,47	16 19	45	13	23	25	45	19	32	35	45	25	39																_
1	22	45	17	 26	28	60	20	33	40	45	30	39 47																
1,5	26	45	19	32	33	60	24	40	40	43	30	41																
2,2	27	60	20	33	38	60	30	46																				
3,3	33	60	23	40	30	- 50	- 30	-10																				
4,7	38	60	29	45																					-			
-1,1	max	± 2	max	max	max	± 2	max	max	max	± 2	max	max	max	± 2	max	max	may	± 2	may	max	max	± 2	may	max	max	± 2	max	max

 \pm 20% - \pm 10% - \pm 5% Capacitance tolerances / *Tolérances sur capacité*

For intermediate value, the dimensions are those of the immediately superior value

HOW TO ORDER EXEMPLE DE CODIFICATION À LA COMMANI					
Model	H: Option feature Application in oil	W: if complient RoHS	Capacitance	Capa. tolerance	Rated voltage (VDC)
MPA HT	_	_	1 µF	± 20%	1600 V
Modèle	H : Option utilisation dans huile	W: si conforme RoHS	Capacité	Tol. sur capa.	Tension nom. (V _{CC})


CONDENSATEURS POLYESTER MÉTALLISÉ

BIK-X2/Y-BIK P-X2/Y2-BIK-CR

RoHS = W

Radial leads / Sorties radiales Models / Modèles BIK-X2 BIK-Y BIK-CR BIK P-X BIK P-Y

BIK-X2 and BIK-Y Metallized polyester **BIK-CR** Metallized polyester + resistor (value to be specified) BIK P-X2 and BIK P-Y2 Metallized polypropylene

TECHNOLOGY

Self-healing, non inductive Plastic case Resin sealed (BIK-X2, BIK-Y and BIK-CR) Flame retardant resin sealed [BIK P-X2 and BIK P-Y2]

MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

BIK-X2 et BIK-Y Polyester métallisé BIK-CR Polyester métallisé + résistance (valeur à préciser)
BIK P-X2 et BIK P-Y2

Polypropylène métallisé

TECHNOLOGIE

Autocicatrisable, non inductif Boîtier plastique Obturé résine (**BIK-X2**, BIK-Y et BIK-CR) Obturé résine auto-extinguible (BIK P-X2 et BIK P-Y2)

MARQUAGE

modèle capacité tolérance tension nominale date-code

			•
			CARACTÉRISTIQUES GÉNÉRALES
(BIK-CR)	− 40°C + 85°C	(BIK-CR)	Température d'utilisation
(BIK-X2 - BIK-Y)	- 40°C + 100°C	(BIK-X2 - BIK-Y)	·
(BIK P - X2)	− 55°C + 105°C	(BIK P - X2)	
(BIK P - Y2)	- 55°C + 110°C	(BIK P - Y2)	
for $C_R \le 1 \mu F$ (BIK - X2 / Y)	≤ 70.10 ⁻⁴	pour $C_R \le 1 \mu F$ (BIK - X2 / Y)	Tg δ à 1 kHz
for $C_R > 1 \mu F$ (BIK - X2 / Y)	≤ 50.10 ⁻⁴	pour $C_R > 1 \mu F$ (BIK - X2 / Y)	Tg δ à 50 kHz
for $C_R \le 1 \mu F$ (BIK - X2 / Y2)	≤ 10.10 ⁻⁴	pour $C_R \le 1 \mu F$ (BIK - X2 / Y2)	Tg δ à 1 kHz
(BIK-CR)	non applicable	(BIK-CR)	Tg δ
for $C_R \le 0.33 \mu\text{F}$	≥ 30000 MΩ	pour $C_R \le 0.33 \mu\text{F}$	Résistance d'isolement
for $C_R > 0.33 \mu F$	≥ 1000 MΩ μ F	pour C _R > 0,33 μF	
(BIK-X2 - BIK-Y - BIK-CR)	1,6 U _{RC} /1 mm	(BIK-X2 - BIK-Y - BIK-CR)	Tension de tenue
(BIK P-X2 - BIK P-Y2)	2100 V _{CC} /1s	(BIK P-X2 - BIK P-Y2)	
	≥ 50000 MΩ		Isolement entre bornes réunies et masse
	$ \begin{array}{c} \{ \text{BIK-X2 - BIK-Y} \} \\ \{ \text{BIK P - X2} \} \\ \{ \text{BIK P - Y2} \} \\ \text{for } \mathbb{C}_R \leq 1 \mu \text{F } \{ \text{BIK - X2 / Y} \} \\ \text{for } \mathbb{C}_R \geq 1 \mu \text{F } \{ \text{BIK - X2 / Y} \} \\ \text{for } \mathbb{C}_R \leq 1 \mu \text{F } \{ \text{BIK - X2 / Y2} \} \\ \{ \text{BIK-CR} \} \\ \text{for } \mathbb{C}_R \leq 0.33 \mu \text{F} \\ \text{for } \mathbb{C}_R > 0.33 \mu \text{F} \\ \text{BIK-X2 - BIK-Y - BIK-CR} \\ \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

			BIK - X2					BIK-Y					BIK P - X2					BIK P-Y					BIK - CR		
Voltage / Tension U _{RC}																							400 V _{CC}		
Voltage / Tension U _{RA}			250 V _{CA}					250 V _{CA}					300 V _{CA}					300 V _{CA}					250 V _{CA}		
Dimensions (mm)					W					W					W				Х	W					W
1 nF	14	9,3	5,5	10,2	0,6	14	9,3	5,5	10,2	0,6						13	9	4	10,2	0,6					
1,5	14	9,3	5,5	10,2	0,6	14	9,3	5,5	10,2	0,6						13	9	4	10,2	0,6					
2,2	14	9,3	5,5	10,2	0,6	14	9,3	5,5	10,2	0,6						13	9	4	10,2	0,6					
3,3	14	9,3	5,5	10,2	0,6	14	9,3	5,5	10,2	0,6						13	9	5	10,2	0,6					
4,7	14	11	6	10,2	0,6	14	11	6	10,2	0,6						13	9,5	6	10,2	0,6					
6,8	18	11	6,25	15,2	0,8	18	11	6,25	15,2	0,8						13	12	6	10,2	0,6					
10	18	11	6,25	15,2	0,8	18	12,5	7,5	15,2	0,8	13	9	4	10,2	0,6	18	11	5,5	15,2	0,8					
15	18	11	6,25	15,2	0,8	18	12,5	7,5	15,2	0,8	13	9	4	10,2	0,6	18	11	6,5	15,2	0,8					
22	18	12,5	7,5	15,2	0,8	18	12,5	7,5	15,2	0,8	13	11	5	10,2	0,6	18	14,5	7,5	15,2	0,8					
33	18	12,5	7,5	15,2	0,8	26	16,5	8	22,8	0,8	13	11	5	10,2	0,6	18	15	8,5	15,2	0,8					
47	18	12,5	7,5	15,2	0,8	26	16,5	8	22,8	0,8	13	12	6	10,2	0,6	18	16,5	10	15,2	0,8					
68	18	12,5	7,5	15,2	0,8	26	18	10	22,8	0,8	18	12	6	15,2	0,8	26	14,5	7,5	15,2	0,8					
100	26	16,5	8	22,8	0,8	32	18	12	27,9	1	18	13	7	15,2	0,8	26	20	9,5	22,8	0,8	18	14,5	9,5	15,2	0,8
150	26	16,5	8	22,8	0,8						18	14,5	8,5	15,2	0,8	26	21,5	12,5	22,8	0,8					
220	26	16,5	8	22,8	0,8						18	16	10	15,2	0,8	26	25,5	15	22,8	0,8	26	16,5	8	22,7	0,8
330	26	18	10	22,8	0,8						26	16,5	8	22,8	0,8	31,5	25,5	15,5	27,9	0,8					
470	32	21	13,5	27,9	1						26	18	10	22,8	0,8	31,5	28,5	20	27,9	0,8	26	18	10	22,7	0,8
680											26	21,5	12,5	22,8	0,8	31,5	34,5	22,5	27,9	0,8					
1 μF											26	25,5	15	22,8	0,8	42	30	22	37,5	1	32	21	13,5	27,9	1
1,5											32	26	15	27,9	0,8										
2,2											32	28	18	27,9	0,8										
3,3											42,5	30	22	37,5	1										
4,7											42,5	37	28	37,5	1										
Tolerances (mm)	max	max	max	$\pm 0,5$	+10% - 0,05	max	max	max	$\pm 0,5$	+10% - 0,05	$\pm 0,5$	$\pm 0,5$	$\pm 0,5$	± 0.5	+10% - 0,05	± 1	± 0.3	max	$\pm 0,5$	+10% - 0,05	max	max	max	± 0.5	+10% - 0,05

 \pm 20% - \pm 10% - \pm 5%

For intermediate value, the dimensions are those of the immediately superior value

Capacitance tolerances / Tolérances sur capacité Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure

HOW TO ORDER	HOW TO ORDER EXEMPLE DE CODIFICATION À LA COMMANDE										
Model	UL: Optional feature flame retardant	W: if complient RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{AC})						
BIK - X2	_	1	47 nF	10%	250 V						
Modèle	UL : Option auto-extinguible	W : si conforme RoHS	Capacité	Tol. sur capa.	Tension nom. (V _{CA})						

GENERAL INFORMATION *GÉNÉRALITÉS*

CAPACITORS FOR H.F. SWITCH MODE POWER SUPPLIES

Capacitor ranges PM 89, PM 90, PM 94 and PM 96 are specially manufactured for use in switch mode power supplies.

Film selection

EXXELIA TECHNOLOGIES manufactures film capacitors using most of the technologies available, especially polyester, polypropylene and polycarbonate films which have good intrinsic properties suited to certain applications where current, temperature, power and high voltage are very important parameters.

For manufacturing filtering capacitors for high frequency switch mode power supplies, EXXELIA TECHNOLOGIES uses mainly P.E.T. and P.E.N. polyester films.

• P.E.T. (Polyethylene terephtalate) • P.E.N. (Polyethylene naphtalate).

Construction

The construction of the electrodes aims at reducing the series inductance value which is the main cause of resonance. This feature together with low series resistance values gives very low impedance values at high frequencies.

These series are recommended for use in a high frequency range from some kHz to some MHz and present very dynamic characteristics.

Main characteristics of these capacitors:

- Small size
- · Self healing properties
- High temperature range
- High RMS current
- High permissible pulse rise time (dV/dt)
- Low ESR and low inductance
- · Light weight
- No variation of capacitance versus applied voltage.

The evolution of the different characteristics in fonction of frequency or temperature are determining factors when it comes to choosing adequate capacitors for Military, Space, Professional and Industrial applications.

Mounting method

Surface-mounted components can be mounted by vapour phase or in a convection oven. Temperature profiles are specified in the **CECC 00802** standard. Temperature limits:

• P.E.T. = 215°C (20 s at 40 s) • P.E.N. = 230 C (20 s at 40 s).

CONDENSATEURS POUR ALIMENTATIONS À DÉCOUPAGE H.F.

Les condensateurs des gammes **PM 89, PM 90, PM 94** et **PM 96** sont spécialement conçus pour être utilisés dans des alimentations à découpage et à résonance haute fréquence.

Choix du film utilisé

EXXELIATECHNOLOGIES fabrique des condensateurs films dans la plupart des technologies disponibles et en particulier les films polyester, polypropylène et polycarbonate qui offrent des propriétés intrinsèques répondant à certaines applications où le courant, la température, la puissance, la haute tension sont des paramètres essentiels.

Pour la réalisation des condensateurs de filtrage pour alimentation à découpage H.F., EXXELIA TECHNOLOGIES a choisi principalement les films polyester.

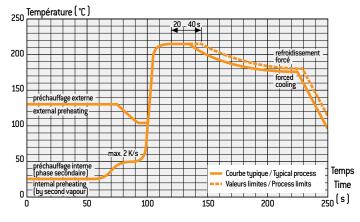
• P.E.T. (Polytéréphtalate d'éthylène) • P.E.N. (Polynaphtalate d'éthylène).

Technologie de construction

La configuration particulière des électrodes a pour objet de réduire les valeurs d'inductance série, source principale de l'apparition des phénomènes de résonance. Cette particularité, associée aux faibles valeurs de résistance série, permet d'obtenir de très basses impédances à des fréquences élevées.

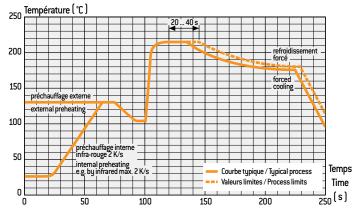
Ces modèles sont recommandés pour une utilisation dans une gamme de fréquences allant de quelques dizaines de kHz à 1 MHz.

Principales caractéristiques de ces condensateurs :


- Faible encombrement
- Excellentes propriétés d'autocicatrisation
- Gamme de températures étendue
- Courant admissible élevé (I_{RA})
- Forte variation de tension (dV/dt)
- Faible inductance série et faible résistance série
- Faible poids
- Pas de variation de capacité en fonction de la tension appliquée.

Les courbes d'évolution des différents paramètres, en fonction de la fréquence ou de la température, constituent des éléments déterminants pour le choix des condensateurs adaptés dans les domaines Militaire, Spatial, Professionnel et Industriel.

Mode de report


Les composants CMS peuvent être reportés dans un four à convection ou en phase vapeur. Les profils de températures sont définis dans la norme **CECC 00802**. Températures à ne pas dépasser :

• P.E.T. = 215°C (20 s à 40 s) • P.E.N. = 230 C (20 s à 40 s).

Vapour phase soldering, batch-system with preheating

Soudage phase vapeur, système discontinu avec préchauffage

Vapour phase soldering, in-line-system with preheating

Soudage phase vapeur, système en ligne avec préchauffage

GENERAL INFORMATION GÉNÉRALITÉS

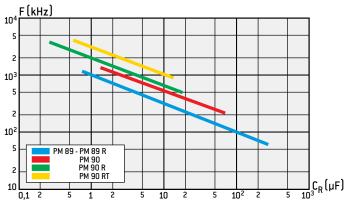
PM 90 and PM 94 pulse rise time

Case lenght	PM 90 M PM 90 MS PM 90 MR PM 90 MSR			PM 90 S - PM 90 -			
Longueur du boîtier	50 V	50 V	100 V	200 V	250 V	400 V	630 V
dd Dortier			dV/	dt (V/µs)			
20 mm	15	20	30	40	50	85	120
31 mm		15	20	25	30	50	65

For peak to peak voltages lower than rated voltage (Upp<U $_R$), the specified dV/dt can be multiplied by the factor U $_R$ /Upp.

Test and measurement conditions

The tests are performed in compliance with the following standards:


- EN 130 000
- EN 60384-2
- EN 60384-19

Recommendations for use of PM 90, PM 94, PM 96 and MKT ranges

These capacitors are not polarised. However marking shows the + polarity used during manufacturing and electric tests.

It is recommended to continue using this polarity.

METALLIZED POLYESTER CAPACITORS PERFORMANCE

Resonant frequency versus capacity

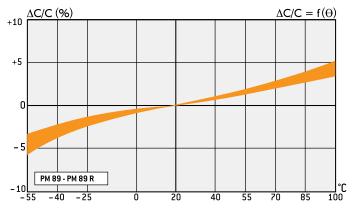
Fréquence de résonance en fonction de la capacité

Variation de tension pour les modèles PM 90 et PM 94

			PM 94 S - F	PM 94 NS		
Cases			PM 94 - F	PM 94 N		
Boîtiers	50 V	63 V	100 V	200 V	250 V	400 V
			dV/dt (V/µs)		
PM 94-0	70	95	110	150	170	300
PM 94-1	40	65	80	120	150	200
PM 94-2	20	30	40	55	70	100
PM 94-3	20	30	40	55	70	100
PM 94-4	15	25	35	45	55	90

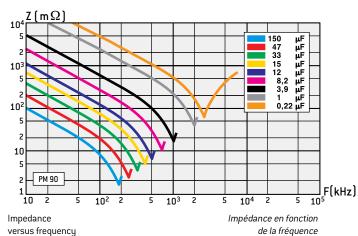
Pour les tensions crête à crête (Upp) plus petites que la tension nominale (U_R), le dV/dt spécifié peut être multiplié par le facteur U_R /Upp.

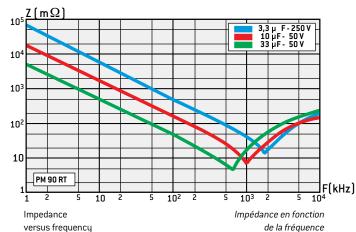
Conditions de mesures d'essais


Les essais sont réalisés en conformité avec les normes :

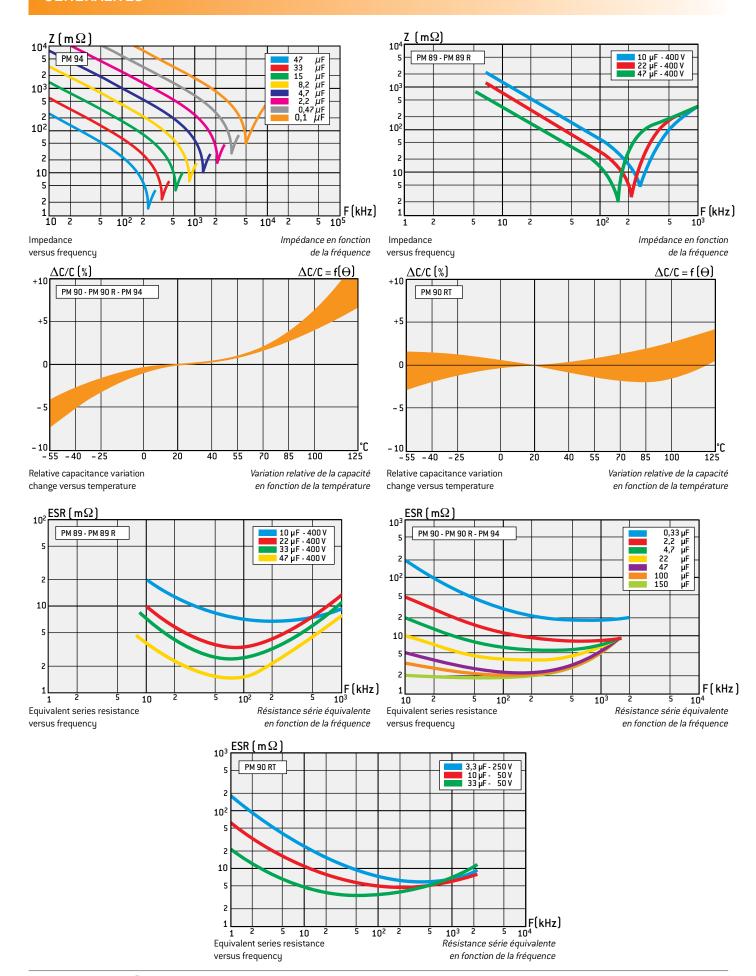
- EN 130 000
- EN 60384-2
- EN 60384-19

Recommandations d'utilisation pour les PM 90, PM 94, PM 96 et MKT

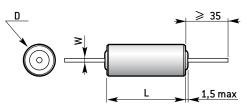

Ces condensateurs ne sont pas polarisés. Cependant le marquage comporte le repère de la polarité + utilisée durant la fabrication et les tests électriques. Il est recommandé de respecter cette polarité.


COMPORTEMENT DES CONDENSATEURS POLYESTER MÉTALLISÉ

Relative capacitance variation change versus temperature


Variation relative de la capacité en fonction de la température

GENERAL INFORMATION GÉNÉRALITÉS


PM 96 - PM 96 T

Axial leads

Models PM 96 - PM 96 T

PM 96 S-PM 96 ST For space use. Contact our sales department. Recommendations for use: see page 37

Sorties axiales

Modèles PM 96 - PM 96 T

PM 96 S-PM 96 ST Pour utilisation spatiale. Consulter notre Service Commercial. Recommandations d'utilisation : voir page 37

DIELECTRIC

Metallized polyester (P.E.T.)

TECHNOLOGY

Aluminium tube Self-healing, non-inductive Epoxy resin sealed Insulating sleeve

MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

Polyester (P.E.T.) métallisé

TECHNOLOGIE

Tube aluminium Autocicatrisable, non inductif Obturé résine époxy Protection gaine isolante

MARQUAGE

modèle capacité tolérance tension nominale date-code

GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Operating temperature	PM 96	−55°C +85°C	PM 96	Température d'utilisation
	PM 96 T	-55°C +100°C	PM 96 T	
D. F. Tg δ at 1 kHz		≤ 100.10 ⁴		Tg δ à 1 kHz
Insulation resistance	for $C_R \le 0.33 \mu\text{F}$ and $U_R \le 100 V_{DC}$	≥ 3750 MΩ	pour $C_R \le 0.33 \mu\text{F}$ et $U_R \le 100 V_{CC}$	Résistance d'isolement
	and $U_R > 100 V_{DC}$	≥ 7500 MΩ	et $U_R > 100 V_{CC}$	
	for $C_R > 0.33 \mu\text{F}$ and $U_R \leq 100 V_{DC}$	≥ 1250 MΩ.µF	pour $C_R > 0.33 \mu\text{F}$ et $U_R \le 100 V_{CC}$	
	and $U_R > 100 V_{DC}$	≥ 2500 MΩ. µ F	et $U_R > 100 V_{CC}$	
Test voltage		1,6 U _{RC}	· · · · · · · · · · · · · · · · · · ·	Tension de tenue
Inductance	-	20 nH		Inductance

CAPACITANC	E VALUES AN	D RATED VOLT	AGE (D.C.)								VALE	URS DE CAF	PACITÉ ET DE TEN	ISION (U _{RC.}
Dimensions	(mm)		25	٧	63	٧	100	O V	160) V	250) V	630	V
			C _R	I _{RA} *	C _R	I _{RA} *	C _R	I _{RA} *	C _R	I _{RA} *	C _R	I _{RA} *	C _R	I _{RA} *
18,5	5,4	0,6			0,15 μF	0,1								
18,5	5,4	0,6	0,47 μF	0,3	0,22 μF	0,2	0,1 <i>μ</i> F	0,1						
18,5	6,4	0,6	0,68 µF	0,5	0,33 μF	0,3	0,15 <i>μ</i> F	0,2						
18,5	6,4	0,6					0,22 <i>μ</i> F	0,3	0,1 μF	0,2				
18,5	7,4	0,6	1 μF	0,7	0,47 μF	0,4								
18,5	7,4	0,6	1,5 μF	1,1	0,68 µF	0,6	0,33 μF	0,4	0,15 μF	0,3	0,1 μF	0,3		
18,5	8,4	0,6									0,15 μF	0,4	33 nF	0,5
18,5	8,4	0,6											47 nF	0,6
21	7,4	0,6	2,2 μF	1	1 μF	0,5	0,47 μF	0,3	0,22 <i>μ</i> F	0,3				
21	8,4	0,6	3,3 μF	1,6	1,5 μF	0,8	0,68 µF	0,5	0,33 μF	0,4	0,22 <i>µ</i> F	0,4	68 nF	0,5
21	8,4	0,6											0,1 μF	0,6
21	9,4	0,8	4,7 μF	2,3	22	4.2	1 μF	0,7	0,47 μF	0,6	0,33 μF	0,5		
21 25	10,7 9,4	0,8			2,2 μF	1,2	1.55	0.0	0.00.45	0.0	0,47 μF	0,8	0.15.45	0,6
25	9,4	0,8			3,3 μF	1,3	1,5 μF	0,8	0,68μF	0,6			0,15 μF 0,22 μF	0,6
25	10,7	0,8	6,8 μF	2,3	4,7 μF	1,8	2,2 μF	12	1 μF	0,8	0,68 μF	0,8	0,ΕΕ μ1	0,1
25	11,7	0,8	10 μF	3,3	- γ. μ		_,_ p.:			-,-	1 μF	1,1	0,33 μF	1,4
25	12,7	0,8	,						1,5 μF	1,2	1,5 μF	1,7	0,47 μF	1,6
34	9,4	0,8					3,3 μF	1,3						
34	10,7	0,8			6,8 μF	1,9	, ,	,						
34	11,7	0,8			,	<u> </u>	4,7 μF	1,8	2,2 μF	1,3			0,68 μF	1,6
34	12,7	0,8			10 μF	2,8	6,8 μF	2,6	,	· · · · · · · · · · · · · · · · · · ·	2,2 μF	1,7		
34	13,7	0,8					· ·	· ·	3,3 μF	2			1 μF	2,3
34	15,7	0,8							4,7 μF	2,8	3,3 μF	2,6	,	,-
34	16,7	0,8			22 μF	5	10 μF	3,8	, [-	,	- /-	,-	1,5 μF	3,5
34	17,7	0,8					. 1.	-,-			4,7 μF	3,8	, , , , ,	
34	18,7	0,8							6,8 μF	4,1	.,, ,	-,-	2,2 μF	4,8
34	20,7	0,8							10 μF	5	6,8 μF	5	Σ,Σ μ.	.,0
34	23,7	0,8			47 μF	5	22 μF	5	p.		-,- µ.		3,3 µF	5
34	25,9	0,8			-11 μ1		LL μ1				10 μF	5	4,7 μF	5
46	25,9	0,8			100 μF	5	47 μF	5	22 μF	5	10 μ1		7,1 121	3
max	max	+10%			M.		/ /		- ± 10%					

Tolerances on dimensions

Tolérances dimensionnelles

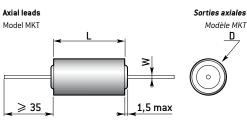
± 20% - ± 10% Capacitance tolerances / Tolérances sur capacité

* I_{RA}: Permissible RMS current in amperes up to 85°C (200 kHz)

* I_{RA} : Intensité efficace admissible en ampères jusqu'à 85°C (200 kHz)

For intermediate value, the dimensions are those of the immediately superior value

Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure


HOW TO ORDER	HOW TO ORDER EXEMPLE DE CODIFICATION À LA COMMANDE										
Model	T:+100°C	W: RoHS	F, S: Quality level	Capacitance	Capa. tolerance	Rated voltage (V _{DC})	Lev B/C/EM : Space level				
PM 96	-	1	_	10 µF	± 20%	250 V					
Modèle	T :+100℃	W : RoHS	F, S : Niveau de qualité	Capacité	Tol. sur capa.	Tension nom. (V _{CC})	CECC+: Other reliability level				

39 www.exxelia.com - info@exxelia.com Tel:+33 (0)1 49 23 10 00 Page revised - Version 04/15

MKT RoHS = W

0 -55 20

MKT For space use (ESA/SCC 3006/019). Contact our sales department. MKT Pour utilisation spatiale (ESA/SCC 3006/019). Consulter notre Service Commercial.

Recommendations for use : see page 37 Recommandations d'utilisation : voir page 37

DIELECTRIC

Metallized polyester (P.E.T.)

TECHNOLOGY

Self-healing, non-inductive Aluminium tube Epoxy resin sealed Insulating sleeve

MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

Polyester (P.E.T.) métallisé

TECHNOLOGIE

Autocicatrisable, non inductif Tube aluminium Obturé résine époxy Protection gaine isolante

U_R (%)

80

MARQUAGE

modèle capacité tolérance tension nominale date-code

85 100

GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Climatic category		55/100/21		Catégorie climatique
D. F. Tg δ at 1 kHz		≤ 100.10 ⁴		Tg δ à 1 kHz
Insulation resistance	pour C _R ≤ 0,33 <i>µ</i> F	≥ 15000 MΩ	pour C _R ≤ 0,33 μF	Résistance d'isolement
	pour $C_R > 0.33 \mu F$	≥ 5000 MΩ μ F	pour $C_R > 0.33 \mu F$	
Test voltage		1,6 U _{RC}		Tension de tenue
Test voltage between leads and case		2 Una		Tension de tenue entre hornes réunies et masse

Dimensions (r		TED VOLTAGE (50		100	2.V	160		250) V	630	V
Ì												
L	D	W	C _R	I _{RA} *	C _R	I _{RA} *						
18,5	7,4	0,6	0,47 μF	0,4	0,1 μF	0,1	0,1 μF	0,2				
18,5	7,4	0,6	0,68 µF	0,6	0,15 μF	0,2	0,15 μF	0,3				
18,5	8,4	0,6			0,22μF	0,3	0,22 μF	0,3	0,1 μF	0,3	33 nF	0,5
18,5	8,4	0,6			0,33 μF	0,4	0,33 μF	0,4	0,15 μF	0,4		
18,5	8,4	0,6			0,47 μF	0,3						
18,5	8,4	0,6	1 μF	0,5	0,68 μF	0,5						
18,5	9,4	0,8	1 μFL	0,5					0,22 μF	0,4	47 nF	0,6
18,5	9,4	0,8	1,5 μF	0,8								
18,5	12,7	0,8									0,22 <i>μ</i> F	0,7
21	8,4	0,8			1 μF	0,7	0,47 μF	0,6				
21	8,4	0,8			1,5 μF	0,8					68 nF	0,5
21	9,4	0,8							0,33 μF	0,5	0,1 μF	0,6
21	9,4	0,8	2,2 μF	1,2	2,2 μF	1,2	0,68 μF	0,6	0,47 μF	0,8		
21	10,7	0,8	3,3 <i>μ</i> F	1,3	3,3 μF	1,3	1 μF	0,8	0,68 μF	0,8	0,15 μF	0,6
21	10,7	0,8	4,7 μF	1,8								
21	11,7	0,8			4,7 μF	1,8	1,5 μF	1,2	1 μF	1,1	0,22 μFL	0,7
21	12,7	0,8	6,8 <i>μ</i> F	1,9			2,2 μF	1,3				
21	13,7	0,8	10 μF	2,8					1,5 μF	1,7	0,33 μF	1,4
21	15,7	1							2,2 μF	1,7	0,47 μF	1,6
25	12,7	0,8									0,47 μFL	1,6
34	10,7	0,8			6,8 μF	2,6						
34	11,7	0,8					3,3 <i>μ</i> F	2				
34	12,7	0,8			10 μF	3,8	4,7 μF	2,8				
34	13,7	0,8									0,68 µF	1,6
34	14,7	0,8					6,8 μF	4,1	3,3 μF	2,6		
34	15,7	1			22 μF	5					1 μF	2,3
34	16,7	1					10 μF	5	4,7 μF	3,8		
34	18,7	1					•		6,8 μF	5	1,5 μF	3,5
34	21,7	1			47 μF	5			10 μF	5	2,2 µF	4,8
34	25,7	1			·						3,3 <i>µ</i> F	5
34	29,7	1			100 μF	5					4,7 μF	5
max	max	+10% - 0,05			,							

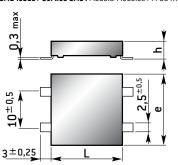
Tolerances on dimensions Tolérances dimensionnelles $\pm~20\%$ - $\pm~10\%$ - $\pm~5\%$ Capacitance tolerances / Tolérances sur capacité

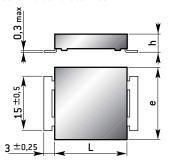
 * I_{RA} : Permissible RMS current in amperes [100 kHz]

* I_{RA}: Intensité efficace admissible en ampères (100 kHz)

For intermediate value, the dimensions are those of the immediately superior value

Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure


HOW TO UNDER						EXEMPLE DE C	UDIFICATION A LA CUMMANDE
Model	L: Long case	W: RoHS	F, S: Quality level	Capacitance	Capa. tolerance	Rated voltage (V _{DC})	Lev B/C/EM : Space level
MKT	_	_	_	1,5 µ F	± 5%	160 V	
Modèle	L: Boîtier long	W: RoHS	F, S : Niveau de qualité	Capacité	Tol. sur capa.	Tension nom. (V _{CC})	CECC+: Other reliability level
-			•	•			


PM 90 RT

SMD leads / Sorties CMS: Models/Modèles PM 90 RT 1

SMD leads / Sorties CMS: Models/Modèles PM 90 RT 2

SMD model (surface mount device) / Modèles pour utilisation CMS (montage en surface)

Soldering conditions according to CECC 00802 / Conditions de soudage suivant CECC 00802 : Class B/Classe B Max. soldering temperature by solder reflow / Température max. de soudage par refusion: 230°C/20 to/ \grave{a} 40 s.

Recommendations for use: see page 37/Recommandations d'utilisation: voir page 37

DIELECTRIC

Metallized polyester (P.E.N.)

TECHNOLOGY

Self-healing Low inductance Thermoplastic case Epoxy resin sealed

MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

Polyester (P.E.N.) métallisé

TECHNOLOGIE

Autocicatrisable Faible inductance Boîtier thermoplastique Obturé résine époxy

MARQUAGE

modèle capacité tolérance tension nominale date-code

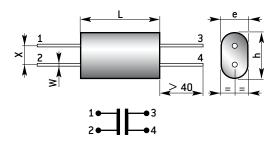
GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Climatic category		55/125/21		Catégorie climatique
D. F. Tg δ at 1 kHz		≤ 100.10 ⁻⁴		Tg δ à 1 kHz
Insulation resistance	for $C_R \le 0.33 \mu\text{F}$ and $\le 100 \text{V}_{DC}$	≥ 1250 MΩ μ F	pour $C_R \le 0.33 \mu\text{F}$ et $\le 100 \text{V}_{CC}$	Résistance d'isolement
	and $> 100 V_{DC}$	≥ 2500 MΩ μ F	$et > 100 V_{CC}$	
Test voltage		1,6 U _{RC}		Tension de tenue
Insulation between leads and case		≥ 50000 MΩ		Isolement entre bornes réunies et masse
Permissible current at 300 kHz up to 105°C		I _{RA}		Intensité eff. admissible à 300 kHz jusqu'à 105°C
at 125° C		0,1 I _{RA}		à 125℃
Measurement and test conditions		EN 130 000 / EN 60384-19	9	Conditions de mesures et d'essais

limensions (n	nm)		50		10	V	25	V	400 V		
L	h	е	C _R	C _R I _{RA} C _R	C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA}	
20	6,5	19	6,8 <i>µ</i> F	2,5	3,3 <i>µ</i> F	1,6	1,5 <i>μ</i> F	1,5	0,68 <i>μ</i> F	1,6	
20	6,5	19			3,9 <i>µ</i> F	2	1,8 <i>µ</i> F	1,8			
20	8	19	8,2 <i>µ</i> F	3,1	4,7 μF	2,4	2,2 <i>µ</i> F	2,2	0,82 μF	1,9	
20	8	19	10 μF	3,8	5,6 μF	2,8					
20	10	19	12 μF	4	6,8 <i>µ</i> F	3,1	2,7 μF	2,8	1 <i>µ</i> F	2,4	
20	10	19			8,2 µF	3,7	3,3 <i>µ</i> F	3,4	1,2 μF	2,9	
20	12	19	15 <i>μ</i> F	5	10 μF	5,1	3,9 <i>µ</i> F	4	1,5 μF	3,6	
20	15	19	18 <i>μ</i> F	6,9	12 μF	6,1	4,7 μF	4,8	1,8 <i>µ</i> F	4,3	
20	18	19	22 μF	8,4	15 μF	7,7	5,6 μF	5,8	2,2 μF	5,3	
20	20	19	27 μF	10,4	18 <i>μ</i> F	9,2	6,8 <i>µ</i> F	7,5			
20	25	19	33 μF	12,5	22 <i>µ</i> F	10,1	8,2 <i>µ</i> F	8,5	2,7 μF	6	
20	30	19	39 μF	12,5			10 <i>μ</i> F	10,3	3,3 <i>µ</i> F	7,9	
20	30	19							3,9 <i>µ</i> F	9,4	

 \pm 20% - \pm 10%

Tolerances on dimensions Tolérances dimensionnelles Capacitance tolerances / Tolérances sur capacité

For intermediate value, the dimensions are those of the immediately superior value Toute valeur	intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure
---	--


HOW TO ORDER				EXEMPLE D	E CODIFICATION À LA COMMANDE
Model	SMD leads type	W:RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})
PM 90	RT 2	_	10 μF	± 10%	100 V
Modèle	Type de sortie CMS	W : RoHS	Capacité	Tol. sur capa.	Tension nom. (V _{CC})

PM 89 *RoHS = W*

Axial leads Model PM 89

Sorties axiales Modèle PM 89

DIELECTRIC

Metallized polyester (P.E.T.)

TECHNOLOGY

Self-healing, non-inductive Polyester wrapped

MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

Polyester (P.E.T.) métallisé

TECHNOLOGIE

Autocicatrisable, non inductif Enrobé polyester

MARQUAGE

modèle capacité tolérance tension nominale date-code

GENERAL CHARACTERISTICS		CARACTÉRISTIQUES GÉNÉRALES
Operating temperature	−55°C +125°C	Température d'utilisation
Rated temperature	+100°C	Température nominale
D. F. Tg δ at 1 kHz	≤ 100.10 ⁻⁴	Tg δ à 1 kHz
Insulation resistance	≥ 10000 MΩ. µ F	Résistance d'isolement
Test voltage	1,6 U _{RC}	Tension de tenue
Category voltage at 125°C	0,75 U _{RC}	Tension de catégorie à 125°C
Insulation between leads and case	≥ 50000 MΩ	Isolement entre bornes réunies et masse

	OL WILDES AIN	D RATED VOLT	HOL (D.C.)								, , , , , , , , , , , , , , , , , , ,	ONS DE CAL	ACITÉ ET DE TEN	ioioii (o _{Ri}
limension	s (mm)				50	V	100 V		250 V		400	v	500	v
	h	е	х	W	C _R	I _{RA} *	C _R	I _{RA} *	C _R	I _{RA} *	C _R	I _{RA} *	C _R	I _{RA} *
18	6	9	5,08	0,8	2,2 <i>μ</i> F	4	1 μF	3,15	0,68 μF	3,15	0,33 <i>μ</i> F	2,5	0,22 <i>μ</i> F	2,5
18	7	11	5,08	0,8	3,3 <i>µ</i> F	5	1,5 μF	4	1 μF	4	0,47 μF	3,15	0,33 <i>μ</i> F	3,15
18	8	13	5,08	0,8	4,7 μF	6,3	2,2 μF	5	1,5 μF	5	0,68 <i>μ</i> F	4	0,47 μF	4
32	7	10	5,08	1	6,8 <i>µ</i> F	5	3,3 μF	4	2,2 μF	3,15	1 μF	2,5	0,68 µF	2,5
32	8	12	5,08	1	10 μF	6,3	4,7 μF	5	3,3 μF	4	1,5 μF	3,15	1 μF	3,15
32	9	15	7,62	1	15 μF	8	6,8 μF	6,3	4,7 μF	5	2,2 μF	4	1,5 μF	4
32	11	18	7,62	1	22 <i>μ</i> F	10	10 μF	8	6,8 μF	6,3	3,3 μF	5	2,2 μF	5
32	13	22	10,16	1	33 μF	12,5	15 μF	10	10 μF	8	4,7 μF	6,3	3,3 μF	6,3
32	14	27	10,16	1	47 μF	15	22 <i>μ</i> F	12,5	15 μF	10	6,8 μF	8	4,7 μF	8
45	14	27	10,16	1,2			33 μF	25	22 μF	25	10 μF	16	6,8 μF	16
45	17	32	12,7	1,2			47 μF	25	33 μF	25	15 μF	20	10 μF	20
45	22	36	12,7	1,2					47 μF	25	22 μF	25	15 μF	25
45	28	44	12,7	1,2							33 μF	25	22 μF	25
45	36	48	12,7	1,2							47 μF	25	33 μF	25
60	10	26	12,7	1,2					22 μF	20	10 μF	12,5	6,8 <i>μ</i> F	12,5
60	14	28	12,7	1,2					33 μF	25	15 μF	16	10 μF	16
60	20	32	12,7	1,2					47 μF	25	22 μF	20	15 μF	20
60	26	36	12,7	1,2							33 μF	25	22 μF	25
60	30	44	12,7	1,2							47 μF	25	33 μF	25
± 2	± 2	± 2	± 2	+10%					± 20% - ±					

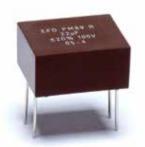
Tolerances on dimensions Tolérances dimensionnelles

* I_{RA}: Permissible RMS current in amperes (100 kHz)

* IRA : Intensité efficace admissible en ampères (100 kHz)

For intermediate value, the dimensions are those of the immediately superior value

Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure


Model short : PM 89 C

Modèle court : PM 89 C

HUW IU UKDEK					EXEMPLE DE LU	DIFICATION A LA CUMMANDE
Model	C: Short case	UL: Flame retardant	W:RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})
PM 89	-	-	-	33 µF	± 10%	400 V
Modèle	C: Boîtier court	UL : Auto-extinguible	W: RoHS	Capacité	Tol. sur capa.	Tension nom. (V_{CC})
			•	•		

PM89R

Radial leads Sorties radiales Radial leads Sorties radiales Model PM 89 R molded Modèle PM 89 R moulé Model PM 89 R wrapped Modèle PM 89 R enrobé 2

DIELECTRIC

Metallized polyester (P.E.T.)

TECHNOLOGY

Self-healing, non-inductive Epoxy resin molded or polyester wrapped

MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

Polyester (P.E.T.) métallisé

TECHNOLOGIE

Autocicatrisable, non inductif Moulé résine époxy ou enrobé polyester

MARQUAGE

modèle capacité tolérance tension nominale date-code

GENERAL CHARACTERISTICS		CARACTÉRISTIQUES GÉNÉRALES
Operating temperature	−55°C +125°C	Température d'utilisation
Rated temperature	+100°C	Température nominale
D. F. Tg δ at 1 kHz	≤ 100.10 ⁻⁴	Tg δ à 1 kHz
Insulation resistance	≥ 10000 MΩ	Résistance d'isolement
Test voltage	1,6 U _{RC}	Tension de tenue
Category voltage at 125°C	0,75 U _{RC}	Tension de catégorie à 125℃
Insulation between leads and case	≥ 50000 MΩ	Isolement entre bornes réunies et masse

CAPACIT	ANCE VALI	JES AND F	RATED VOLT	AGE (D.C.]							VALE	URS DE CAP.	ACITÉ ET DE TEN	ISION (U _{RC})	
Dimensi	ions (mm)					50	v	10	0 V	25	0 V	400	V	500		
		е		Y	W	C _R	I _{RA} *	C _R	I _{RA} *							
19	10	16	15,24	5,08	0,8									0,1 <i>μ</i> F	1,5	
19	10	16	15,24	5,08	0,8									0,15 μF	2	
19	10	16	15,24	5,08	0,8									0,22 μF	2,5	Epoxu resin molded models
19	10	16	15,24	5,08	0,8	3,3 <i>µ</i> F	5			1 μF	4			0,33 μF	3,15	_ G
19	10	16	15,24	5,08	0,8	4,7 μF	6,3	2,2 <i>µ</i> F	5	1,5 <i>µ</i> F	5	0,68 μF	4	0,47 μF	4	ded
32	10	16	27,96	5,08	1	6,8 <i>µ</i> F	5	3,3 <i>µ</i> F	4	2,2 <i>µ</i> F	3,15	1 μF	2,5	0,68 μF	2,5	mo
32	10	16	27,96	5,08	1	10 μF	6,3	4,7 μF	5	3,3 <i>µ</i> F	4	1,5 μF	3,15	1 μF	3,15	- Si
32	13	17	27,96	5,08	1	15 μF	8	6,8 <i>µ</i> F	6,3	4,7 μF	5	2,2 μF	4	1,5 μF	4	Z I
32	13	23	27,96	10,16	1	22 <i>μ</i> F	10	10 μF	8	6,8 <i>µ</i> F	6,3	3,3 μF	5	2,2 μF	5	- P
32	16	26	27,96	10,16	1	33 μF	12,5	15 μF	10	10 μF	8	4,7 μF	6,3	3,3 μF	6,3	
32	16	26	27,96	10,16	1	47 μF	15	22 <i>µ</i> F	12,5							
32	14	27	27,94	10,16	1,2					15 μF	10	6,8 μF	8	4,7 μF	8	
45	14	27	40,64	10,16	1,2			33 µF	25	22 <i>µ</i> F	25	10 μF	16	6,8 μF	16	
45	16	32	40,64	12,7	1,2			47 μF	25	33 μF	25	15 μF	20	10 μF	20	<u>0</u>
45	21	36	40,64	12,7	1,2					47 μF	25	22 μF	25	15 μF	25	2
45	27	43	40,64	12,7	1,2							33 μF	25	22 μF	25	مور
45	33	47	40,64	12,7	1,2							47 μF	25	33 μF	25	Lan
60	10	26	53,34	12,7	1,2					22 <i>µ</i> F	20	10 μF	12,5	6,8 μF	12,5	Politiester wrapped models
60	14	28	53,34	12,7	1,2					33 μF	25	15 μF	16	10 μF	16	100
60	18	31	53,34	12,7	1,2					47 μF	25	22 μF	20	15 μF	20	
60	25	34	53,34	12,7	1,2							33 μF	25	22 μF	25	
60	29	42	53,34	12,7	1,2							47 μF	25	33 μF	25	
± 2	± 2	± 2	± 1	± 1	+10%					± 20% - ±	10% - + 5%					

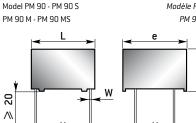
Tolerances on dimensions Tolérances dimensionnelles

 \pm 20% - \pm 10% - \pm 5% Capacitance tolerances / Tolérances sur capacité

* IRA : Permissible RMS current in amperes (100 kHz) * IRA : Intensité efficace admissible en ampères (100 kHz) For intermediate value, the dimensions are those of the immediately superior value Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure Modèle court : PM 89 RC

Model short : PM 89 RC

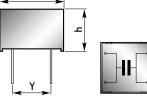
HOW TO ORDER					EXEMPLE DE CO	DIFICATION À LA COMMANDE
Model	C: Short case	UL : Flame retardant	W:RoHS	Capacitance	Capa. tolerance	Rated voltage (VDC)
PM 89 R	-	-	-	33 µF	± 10%	400 V
Modèle	C: Boîtier court	UL : Auto-extinguible	W : RoHS	Capacité	Tol. sur capa.	Tension nom. (V _{CC})


PM 90 RoHS = W

DIELECTRIC Metallized polyester (P.E.T.)

TECHNOLOGY

Self-healing, non-inductive Thermoplastic case Epoxy resin sealed


MARKING

Radial leads

model capacitance tolerance rated voltage date-code

Sorties radiales

Modèle PM 90 - PM 90 S PM 90 M - PM 90 MS

DIÉLECTRIQUE

Polyester (P.E.T.) métallisé

PM 90 S - PM 90 MS

For space use [ESA/SCC 3006/020]. Contact our sales department.

PM 90 S - PM 90 MS

Pour utilisation spatiale (ESA/SCC 3006/020). Consulter notre Service Commercial.

Recommendations for use : see page 37 Recommandations d'utilisation : voir page 37

TECHNOLOGIE

Autocicatrisable, non inductif Boîtier thermoplastique Obturé résine époxy

MARQUAGE

modèle capacité tolérance tension nominale date-code

	4410 0040			uuto oouo
GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Climatic category		55/125/21		Catégorie climatique
D. F. Tg δ at 1 kHz		≤ 100.10 ⁻⁴		Tg δ à 1 kHz
Insulation resistance	for $C_R \le 0.33 \mu\text{F}$ and $\le 100 \text{V}_{DC}$	≥ 3750 MΩ	pour $C_R \le 0.33 \mu\text{F}$ et $\le 100 \text{V}_{CC}$	Résistance d'isolement
	and $> 100 V_{DC}$	≥ 7500 MΩ	$\rm et > 100 V_{CC}$	
	for $C_R > 0.33 \mu\text{F}$ and $\leq 100 \text{V}_{DC}$	≥ 1250 M Ω μ F	pour $C_R > 0.33 \mu\text{F}$ et $\leq 100 \text{V}_{CC}$	
	and $> 100 V_{DC}$	≥ 2500 M Ω μ F	$\rm et > 100 V_{CC}$	
Test voltage		1,6 U _{RC}		Tension de tenue
Insulation between leads and case		≥ 50000 M Ω		Isolement entre bornes réunies et masse
Permissible current at 300 kHz up to 105°C		I _{RA}		Intensité eff. admissible à 300 kHz jusqu'à 105°C
at 125° C		0,1 I _{RA}		à 125℃
Measurement and test conditions		EN 130 000 / EN 60384	-2	Conditions de mesures et d'essais

CAPA	CITANCE	VALUES	S AND RA	TED VOL	TAGE (I	D.C.)											VALEURS DE	CAPACIT	É ET DE TEN	SION (U _{rc})
						Weight	PM 90	M/MS						PM 90 -	PM 90 S					
Dime	nsions (mm J				Masse	5	D V	50		10	0 V	20	D V	25	0 V	400) V	630	D V
L	h			Υ		(g)	C _R	I _{RA}	C _R		C _R	I _{RA}	C _R		C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA}
20	6,5	20	17,8	10,16	1	4,9									1 <i>μ</i> F	1,25				
20	6,5	20	17,8	10,16	1	4,9					3,3 μF	2			1,2 μF	1,6	0,39 <i>μ</i> F	1,25		
20	6,5	20	17,8	10,16	1	4,9					3,9 <i>µ</i> F	2,5			1,5 <i>μ</i> F	2	0,47 μF	1,6		
20	6,5	20	17,8	10,16	1	4,9			8,2 µF	4	4,7 μF	3,15	1,5 <i>μ</i> F	1,5	1,8 <i>μ</i> F	2,5	0,56μF	2		
20	6,5	20	17,8	10,16	1	4,9			10 μF	5	5,6 <i>μ</i> F	4	2,2 <i>μ</i> F	2,2	2,2 <i>μ</i> F	3,15	0,68 μF	2,5	0,22 <i>μ</i> F	0,9
20	6,5	20	17,8	10,16	1	4,9	15 µF	5,2	12 μF	6,3	6,8 <i>µ</i> F	5	3,3 µF	2,6	2,7 μF	4	0,82 <i>μ</i> F	3,15	0,27 μF	1,1
20	8	20	17,8	10,16	1	6	18 <i>µ</i> F	6,2	15 μF	8	8,2 <i>µ</i> F	6,5	3,9 µF	3,1	3,3 μF	5	1 μF	4	0,33 μF	1,4
20	8	20	17,8	10,16	1	6	22 μF	7,6					4,7 μF	3,7	3,9 <i>µ</i> F	5	1,2 μF	4	0,39 μF	1,6
20	12,5	20	17,8	10,16	1	9,5	27 µF	9,4	18 μF	10	10 μF	8	5,6 μF	4,4	4,7 μF	6,3	1,5 μF	5	0,47 μF	1,9
20	12,5	20	17,8	10,16	1	9,5	33 µF	11,5	22 <i>μ</i> F	10	12 μF	8	6,8 <i>µ</i> F	5,4	5,6 μF	6,3	1,8 <i>µ</i> F	5	0,68 <i>μ</i> F	2,8
20	20	20	17,8	10,16	1	13,6	47 μF	12,5	27 μF	12,5	15 <i>μ</i> F	10	8,2 μF	6,5	6,8 <i>µ</i> F	8	2,2 μF	6,3	0,82 <i>μ</i> F	3,4
20	20	20	17,8	10,16	1	13,6	56 μF	12,5	33 μF	12,5	18 μF	10	10 μF	7,9	8,2 μF	8	2,7 μF	6,3	1μF	4,1
20	20	20	17,8	10,16	1	13,6	68 µF	12,5	39μF	12,5	22 μF	10	12 μF	9,5	10 μF	8	3,3 μF	6,3		
20	30	20	17,8	10,16	1	20,4	82 μF	12,5	47 μF	12,5	27 μF	12,5	15 μF	11,9	12 μF	10	3,9 μF	8	1,2 μF	5
20	30	20	17,8	10,16	1	20,4	100 μF	12,5	56 μF	12,5	33 μF	12,5	18 μF	12,5	15 μF	10	4,7 μF	8	1,5 μF	6,2
20	30	20	17,8	10,16	1	20,4													1,8 <i>µ</i> F	7,4
31	12,5	32	27,94		1	21,2			33 μF	7,2	18 μF	6,3	12 μF	5,4	6,8 µF	4,6	2,2 μF	3	1 μF	2,2
31	12,5	32		15,24	1	21,2			39μF	8,5	22 µF	7,7	15 μF	6,7	10 μF	6,7	3,3 μF	4,5	1,5 μF	3,3
31	12,5	32	27,94		1	21,2			47 μF	10,3	33 µF	11,4	18 μF	8,1	12 μF	8	4,7 μF	6,4	1,8 μF	4
31	22	32	27,94		1	37,3			68 μF	15	39 μF	15	22μF	9,9	18 μF	15	5,6 μF	7,9	2,2 μF	5,2
31	22	32		15,24	1	37,3		-	82 μF	15	47 μF	15	33 μF	14,9	22 μF	15	6,8μF	9,6	2,7 μF	6,4
31	22	32	27,94		1	37,3			100 μF	15	56 μF	15			27 μF	15	8,2 μF	11,5	3,3 μF	7,8
31	22	32	27,94		1	37,3			4205	45	50 ··F		475	45	225	45	10 μF	14	3,9 μF	9,2
31	32	32		15,24	1	54,2			120 μF	15	68 μF	15	47 μF	15	33 μF	15	12 μF	15	4,7 μF	11
31	32	32	27,94	15,24	1	54,2			150 μF	15	82 μF	15	56 μF	15	39 μF	15	15 μF	15	5,6 μF	12,5
31	32	32	27,94	15,24	1	54,2					100 μF	15								

 \pm 0,5 \pm 0,5 \pm 0,5 $^{+10\%}_{-0,05}$ max Tolerances on dimensions Tolérances dimensionnelles

 \pm 20% - \pm 10% Capacitance tolerances / Tolérances sur capacité

For intermediate value, the dimensions are those of the immediately superior value

max

Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure

S, F: Quality level M, B: Case W:RoHS Model Capacitance Capa. tolerance Rated voltage (V_{DC}) Lev B/C/EM : Space use PM 90 22 µF ± 20% 100 V M, B : Boîtier **W**: RoHS Modèle S, F : Niv. de qualité Capacité Tol. sur capa. Tension nom. (V_{CC}) CECC+: Other reliability level

 $\pm 0,5$

44 www.exxelia.com - info@exxelia.com Tel:+33 (0)1 49 23 10 00 Page revised - Version 04/16

For space use / Pour utilisation spatiale (ESA/SCC

3006/020). Contact our sales department / Consulter

Modèles pour utilisation CMS (montage en surface) PM 90 SR - PM 90 M SR : Iron soldering / Soudage au fer PM 90 R Soldering conditions according to CECC 00802 / Conditions de soudage suivant CECC 00802 :

PM 90 R 1 - PM 90 R 2

PM 90 SR - PM 90 M SR

notre Service Commercial.

Class B/Classe B

215°C/20 to/à 40 s.

SMD model (surface mount device)

RoHS = W

SMD leads / Sorties CMS Models/Modèles PM 90 R 1 - PM 90 SR 1 PM 90 M R 1 - PM 90 M SR 1 max 3 ±0,25

SMD leads / Sorties CMS Models/Modèles PM 90 R 2 - PM 90 SR 2 PM 90 M R 2 - PM 90 M SR 2 max 0,3 $3 \pm 0,25$

DIÉLECTRIQUE **TECHNOLOGIE** Polyester (P.E.T.) métallisé

Autocicatrisable Faible inductance Boîtier thermoplastique Obturé résine époxy

Max. soldering temperature by solder reflow / Température max. de soudage par refusion :

Recommendations for use : see page Recommandations d'utilisation : voir page DIELECTRIC Metallized polyester (P.E.T.) TECHNOLOGY Self-healing Low inductance Thermoplastic case

model capacitance tolerance rated voltage date-code

MARKING

MARQUAGE modèle capacité tolérance tension nominale date-code

Epoxy resin sealed CARACTÉRISTIQUES GÉNÉRALES Climatic category 55/125/21 Catégorie climatique D. F. Tg δ at 1 kHz ≤ 100.10⁻⁴ Tg δ à 1 kHz Insulation resistance for $C_R \le 0.33 \,\mu\text{F}$ and $\le 100 \,\text{V}_{DC}$ \geq 3750 M Ω pour $C_R \le 0.33 \,\mu\text{F}$ et $\le 100 \,\text{V}_{CC}$ Résistance d'isolement and $> 100 \, V_{DC}$ \geq 7500 M Ω $et > 100 V_{CC}$ pour $C_R > 0.33 \,\mu\text{F}$ et $\leq 100 \,\text{V}_{CC}$ for $C_R > 0.33 \,\mu\text{F}$ and $\leq 100 \,\text{V}_{DC}$ ≥ 1250 MΩ µF and $> 100 \, V_{DC}$ ≥ 2500 M Ω μ F $et > 100 V_{CC}$ 1,6 U_{RC} Test voltage Tension de tenue Insulation between leads and case ≥ 50000 M Ω Isolement entre bornes réunies et masse Permissible current at 300 kHz up to 105°C Intensité eff. admissible à 300 kHz jusqu'à 105°C I_{RA} 0,1 I_{RA} à 125℃ at 125° C EN 130 000 / EN 60384-19 (CECC 32200) Measurement and test conditions Conditions de mesures et d'essais

CAPAC	ITANCE	VALUES	AND RA	TED VO	LTAGE (J.C.)										1	ALEURS DE (CAPACITÉ	ET DE TENSIC	ON (U _{RC})
Dimer	nsions (mm)				Weight	PM 90 M PM 90 M S					PI	490R1-PN	190 R 2 -	PM 90 SR 1	- PM 90	SR 2			
						Masse	50 \	/	50 \	/	100	٧	200	٧	250	٧	400	٧	630	٧
L	h	е	e ₁	Х	а	(g)	C _R	I _{RA}	C _R		C _R	I _{RA}	C _R	I _{RA}	C _R		C _R	I _{RA}	C _R	I _{RA}
20	6,5	20	15	10	2,5	4,9									1μF	1,25				
20	6,5	20	15	10	2,5	4,9					3,3 µF	2			1,2 μF	1,6	0,39μF	1,25		
20	6,5	20	15	10	2,5	4,9					3,9 µF	2,5			1,5 μF	2	0,47 μF	1,6		
20	6,5	20	15	10	2,5	4,9			8,2 µF	4	4,7 μF	3,15	1,5 μF	1,5	1,8 µF	2,5	0,56μF	2		
20	6,5	20	15	10	2,5	4,9			10 μF	5	5,6 μF	4	2,2 µF	2,2	2,2 μF	3.15	0,68 µF	2,5	0,22 <i>μ</i> F	0,9
20	6,5	20	15	10	2,5	4,9	15 μF	5,2	12 µF	6,3	6,8μF	5	3,3 µF	2,6	2,7 μF	4	0,82 μF	3,15	0,27 μF	1,1
20	8	20	15	10	2,5	6	18 µF	6,2	15 µF	8	8,2 μF	6,5	3,9 µF	3,1	3,3 µF	5	1μF	4	0,33 µF	1,4
20	8	20	15	10	2,5	6	22 μF	7,6	- '			,	4,7 μF	3,7	3,9 µF	5	1,2 μF	4	0,39 μF	1,6
20	12,5	20	15	10	2,5	9,5	27 μF	9,4	18 <i>μ</i> F	10	10 μF	8	5,6 μF	4,4	4,7 μF	6,3	1,5 μF	5	0,47 μF	1,9
20	12,5	20	15	10	2,5	9,5	33 μF	11,5	22 µF	10	12 μF	8	6,8 µF	5,4	5,6 μF	6,3	1,8 µF	5	0,68 <i>µ</i> F	2,8
20	20	20	15	10	2,5	13,6	47 μF	12,5	27 µF	12,5	15 μF	10	8,2 μF	6,5	6,8 <i>µ</i> F	8	2,2 <i>μ</i> F	6,3	0,82 <i>μ</i> F	3,4
20	20	20	15	10	2,5	13,6	56 <i>μ</i> F	12,5		12,5	18 μF	10	10 μF	7,9	8,2 <i>μ</i> F	8	2,7 μF	6,3	1 <i>μ</i> F	4,1
20	20	20	15	10	2,5	13,6	68 <i>μ</i> F	12,5	33 µF	12,5	22 <i>μ</i> F	10	12 μF	9,5	10 μF	8	3,3 μF	6,3	1,2 μF	5
20	30	20	15	10	2,5	20,4	82 <i>µ</i> F	12,5	39 <i>μ</i> F	12,5	27 µF	12,5	15 <i>μ</i> F	11,9	12 µF	10	3,9 <i>µ</i> F	8		
20	30	20	15	10	2,5	20,4	100 μF	12,5	47 μF	12,5	33 μF	12,5	18 <i>μ</i> F	12,5	15 μF	10	4,7 μF	8	1,5μF	6,2
20	30	20	15	10	2,5	20,4			56 <i>μ</i> F										1,8 <i>µ</i> F	7,4
31	12,5	32	24	15	4	21,2			33 μF	7,2	18 μF	6,3	12 μF	5,4	6,8 µF	4,6	2,2 μF	3	1μF	2,2
31	12,5	32	24	15	4	21,2			39 μF	8,5	22 μF	7,7	15 μF	6,7	10 μF	6,7	3,3 μF	4,5	1,5 μF	3,3
31	12,5	32	24	15	4	21,2			47 μF	10,3	33 μF	11,4	18 <i>μ</i> F	8,1	12 μF	8	4,7 μF	6,4	1,8 μF	4
31	22	32	24	15	4	37,3			68 µF	15	39 <i>μ</i> F	15	22 <i>µ</i> F	9,9	18 <i>μ</i> F	15	5,6 μF	7,9	2,2 µF	5,2
31	22	32	24	15	4	37,3			82 µF	15	47 μF	15	33 µF	14,9	22 <i>µ</i> F	15	6,8 <i>µ</i> F	9,6	2,7 μF	6,4
31	22	32	24	15	4	37,3			100μF	15	56 <i>μ</i> F	15			27 μF	15	8,2 <i>µ</i> F	11,5	3,3 <i>µ</i> F	7,8
31	22	32	24	15	4	37,3											10 μF	14	3,9 <i>µ</i> F	9,2
31	32	32	24	15	4	54,2			120 μF	15	68 μF	15	47 μF	15	33 μF	15	12 μF	15	4,7 μF	11
31	32	32	24	15	4	54,2			150 μF	15	82 μF	15	56 μF	15	39μF	15	15 μF	15	5,6 μF	12,5
31	32	32	24	15	4	54,2			•		100 μF	15					·			
± 0,5	max	± 0,5	± 0,5	± 0,5	+10%	max							+ 20% -	+ 10%						

 \pm 20% - \pm 10%

Tolerances on dimensions Tolérances dimensionnelles

Capacitance tolerances / Tolérances sur capacité

For intermediate value, the dimensions are those of the immediately superior value

Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure

Low models / Modèles bas : PM 90 R • B - PM 90 SR • B

HOW TO ORDER							EXEMPLE DE CO	DIFICATION À LA COMMANDE
Model	SMD leads type	M, A, MA, B: Case	W: RoHS	S: Quality level	Capacitance	Capa. tolerance	Rated voltage (VDC)	Lev B/C/EM : Space use
PM 90	R1	_	_	_	10 µF	± 20%	100 V	_
Modèle	Type de sortie CMS	M, A, MA, B: Boîtier	W: RoHS	S : Niv. de qualité	Capacité	Tol. sur capa.	Tension nom. (V_{CC})	Lev B/C/EM : Spatial

PM 94 - PM 94 N

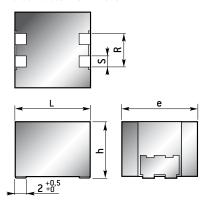
RoHS = W

PM 94 S-PM 94 NS

For space use [ESA/SCC 3006/024].

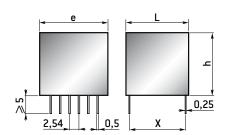
Contact our sales department

Recommendations for use: see page 37


PM 94 S-PM 94 NS

Pour utilisation spatiale (ESA/SCC 3006/024) Consulter notre Service Commercial.

Recommandations d'utilisation : voir page 37


SMD leads / Sorties CMS:

Models/*Modèles* PM 94 - PM 94 S

Models/ <i>Modèles</i>	R ± 0,2	S ± 0,2
PM 94-0 - PM 94 S-0	4	1
PM 94-1 - PM 94 S-1	5	1,5
PM 94-2 - PM 94 S-2	5	1,5
PM 94-3 - PM 94 S-3	7	2
PM 9/1-1 - PM 9/1 S-/	7	2

"DIL" outputs / Terminaisons "DIL": Models/*Modèles* PM 94 N - PM 94 NS

Models/Modèles	X ± 0,4	Nb. connexions
PM 94 N-0 - PM 94 NS-0	5,08	e=7,5 : 2 x 2 e=8,5 : 3 x 2
PM 94 N-1 - PM 94 NS-1	8,25	4 x 2
PM 94 N-2 - PM 94 NS-2	14	4 x 2
PM 94 N-3 - PM 94 NS-3	14	5 x 2
PM 94 N-4 - PM 94 NS-4	15,24	6 x 2

SMD model (surface mount device)	Мос	lèles pour utilisation CMS (montage en surface)
Soldering conditions according to CECC 00802	Class B	Conditions de soudage suivant CECC 00802
Max. soldering temperature by solder reflow	215°C / 20 to 40 s	Température max. de soudage par refusion

DIELECTRICMetallized polyester [P.E.T.]

r

TECHNOLOGY
Self-healing,
Low inductance

Thermoplastic case Epoxy resin sealed Surface mount device [PM 94 - PM 94 S]

Terminations "DIL" leads (PM 94 N - PM 94 NS)

MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

Polyester (P.E.T.) métallisé

TECHNOLOGIE

Autocicatrisable, Faible inductance Boîtier thermoplastique Obturé résine époxy Sorties pour report à plat [PM 94 - PM 94 S]

(PM 94 - PM 94 S) Sorties terminaisons "DIL" (PM 94 N - PM 94 NS)

MARQUAGE

modèle capacité tolérance tension nominale date-code

GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Operating temperature		−55°C +125°C		Température d'utilisation
Climatic category (PM 94 - PM 94 S)		55/125/21		(PM 94 - PM 94 S) Catégorie climatique
Climatic category (PM 94 N - PM 94 NS)		55/125/26		(PM 94 N - PM 94 NS) Catégorie climatique
D. F. Tg δ at 1 kHz	for $C_R \le 1 \mu F$	≤ 80.10 ⁻⁴	$pour C_R ≤ 1 μF$	Tg δ à 1 kHz
	for $C_R > 1 \mu F$	≤ 100.10-4	pour C _R > 1 μF	
Insulation resistance	for $C_R \le 0.33 \mu\text{F}$ and $\le 100 \text{V}_{DC}$	≥ 3750 MΩ	$pour C_R \le 0.33 \mu\text{F et} \le 100 V_{CC}$	Résistance d'isolement
	and $> 100 V_{DC}$	≥ 7500 MΩ	$et > 100 V_{CC}$	
	for $C_R > 0.33 \mu\text{F}$ and $\leq 100 \text{V}_{DC}$	≥ 1250 MΩ. µ F	$pour C_R > 0.33 \mu F \text{ et} \le 100 V_{CC}$	
	and $> 100 V_{DC}$	≥ 2500 MΩ. µ F	$et > 100 V_{CC}$	
Test voltage		1,6 U _{RC}		Tension de tenue
Insulation between leads and case		≥ 50000 MΩ		Isolement entre bornes réunies et masse
Permissible current at 300 kHz up to 105°C		I _{RA}		Intensité eff. admissible à 300 kHz jusqu'à 105℃
at 125° C		0,1 I _{RA}		à 125℃
Measurement and test conditions		CECC 30000- CECC 3220	0	Conditions de mesures et d'essais

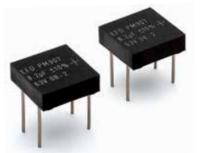
HOW TO OF	RDER							EXEMPLE DE CO	DIFICATION À LA COMMANDE
Model	N: Outputs	S, F: Quality level	Case	UL: Flame retardant	W: RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})	Lev B/C/EM : Space use
PM 94	_	-	4	-	_	10 μF	± 20%	100 V	-
Modèle	N: Sorties	S, F : Niv. de qualité	Boîtier	UL : Auto-extinguible	W : RoHS	Capacité	Tol. sur capa.	Tension nom. (V _{CC})	CECC+ : Other reliability level

PM 94 - PM 94 N

RoHS = W

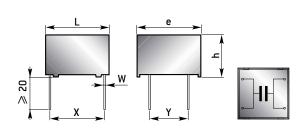
	r —				ED VOLTA																				PACITÉ ET			
Models <i>Modèles</i>	Dime	nsion	s (mm)	Masse	50	/	63		100	٧	200	V	250	٧	400	٧	50	٧	63	V	100		200		250	٧	400	٧
Mo	L	h	е	(g)	C _R	I _{ra}	C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA}	C _R	I _R
	8	4,5	7,5	0,6															0,15 μF			0,2	47 nF	0,2	27 nF	0,1		
	8	4,5	7,5	0,6															0,18 μF				56 nF	0,2	33 nF	0,2	10 nF	0
NS-0	8	4,5	7,5	0,6					-										0,22 μF				68 nF	0,3	39 nF	0,2	12 nF	0
94 N	8	4,5	7,5	0,6				-											0,27 μF				82 nF	0,3	47 nF	0,2	15 nF 18 nF	0
ΣΞ	8	4,5 7,5	7,5 8,5	0,6													υ,68 με	0,8	0,33 µF		0,18 μF 0,22 μF		100 NF	0,3	56 nF 68 nF	0,3		0
M 94 N-0	8	7,5	8,5	0,9													N 82 //F	ηq	0,33μ1 0,47 μF				120 nF	0.6	82 nF	0,3		0
8	8	7,5	8,5	0,9															0,56 μF		-							
Ε	8	7,5	8,5	0,9					-										0,68 μF								39 nF	
	8	7,5	8,5	0,9															0,82 μF								47 nF	0
	8	7,5		0,9															1 μF								56 nF	
	10,7	6	10,7	1	2,2 <i>μ</i> F	1,3	1,5 μF	1,7	0,56 <i>μ</i> F	0,8			0,22 <i>μ</i> F	0,8	0,1 μF		•											
	10,7	6	10,7	1	2,7 μF	1,6	1,8 μF	2,1	0,68 μF	1	0,33 <i>μ</i> F	0,6	0,27 μF	1														
NS-1	10,7	6	10,7	1	3,3 <i>μ</i> F	1,9			0,82 <i>μ</i> F	1,1	0,39 <i>μ</i> F	0,8	0,33 <i>μ</i> F	1,2														
94 N	10,7	6	10,7	1					1 μF	1,8	0,47 μF	1																
Σ	10,7	8	10,7	1,3	3,9 <i>µ</i> F	2,3	2,2μF	2,5	1,2 μF	1,8	0,56 <i>μ</i> F	1,1	0,39 <i>μ</i> F	1,4	0,15 μF	1,2												
4 N-1	10,7	8	10,7	1,3	4,7 μF	2,8			1,5 μF	2,2	0,68 <i>μ</i> F	1,4	0,47 µF	1,7														
94 N-1	10,7	10	10,7	1,7	5,6 <i>μ</i> F	3,3	2,7 μF	3,1	1,8 μF	2,7	0,82 <i>μ</i> F	1,7	0,56 <i>μ</i> F	2	0,22 <i>μ</i> F	1,7												
- M	10,7	10	10,7	1,7	6,8 <i>μ</i> F	4,1	3,3 μF	3,8																				
	10,7	12	10,7	2	8,2 μF	4,9	3,9 µF	4,9	2,2 μF	3,5	1 μF	2,1	0,68 μF	2,4														
	10,7	12	10,7	2	10 μF	6	4,7 μF	6																				
٥.	15,5	6	11,5	1,6											-		4,7 μF	1,4	3,3 μF	1,9	1,5 μF	1,1			0,47 μF	0,8	0,22μF	- 0
NS-2	15,5	6	11,5																3,9 µF	2,3	-				·		0,27 μF	_
94	15,5		11,5						-				-				6,8 μF				2,2 μF	1,7			0,68 μF			
-2 PM	15,5		11,5																4,7 μF	2,8	27		-		0,82 μF			
4 N	15,5	8	11,5														10 μF				2,7 με	2,1	1,5 με	1,5	1 μF	1,6	υ,39μ	1
- Z	15,5 15,5	8 10	11,5 11,5														12 μF		5 G I/E	2 2	3 3 1 1E	2.5	1 Q //E	1 0	1 2 1/E		0.42.45	
Δ.			11,5					_	-				-		-		15 μΓ	4,0	5,6 μF	3,3	3,3 μΓ	2,3	1,0 μΓ	1,0	1,5 μF		υ,4r μι	
	16,5	6	15,5		6.8.uF	1 9	4711F	26	2,2 <i>μ</i> F	1.6			1 μF	1 5	η 42 μΕ	1.6									1,5 μι	۷,5		_
	16,5								2,7 μF		1.2 UF		1 μι		υ, τι μι	1,0												_
	16,5		15,5		10 μF	2,9	υ,υ μ.				1,5 μF																	_
NS.3	16,5		15,5		12 μF	3,4			-,-,-		, - 1 -																	
4.8	16,5	8	15,5	3	-		6,8 µF	3,7	3,9 <i>μ</i> F	2,8	1,8 μF	1,7	1,2 <i>μ</i> F	1,8	0,56 μF	1,9												
<u> </u>	16,5	8	15,5	3	· ·				4,7 μF																			_
Z Z	16,5	10	15,5	3,7	22 μF	6,3	10 μF	5,5	5,6 μF	4	2,7 μF	2,6	1,8 <i>μ</i> F	2,7	0,82 μF	2,8												
PM 94 N	16,5	10	15,5	3,7							3,3 <i>µ</i> F	3,2	2,2 <i>μ</i> F	3,4														
ā	16,5	12	15,5	4,7	27 μF	7,8	12 μF	6,6	6,8 <i>µ</i> F	4,9	3,9 <i>µ</i> F	3,8	2,7 μF	4,1	1 μF	3,4												
	16,5	14	15,5	5,2	33 μF	9,5	15 μF	8,3	8,2 <i>µ</i> F	5,9	4,7 μF	4,6	3,3 <i>µ</i> F	5	1,2 μF	4												
	16,5	17	15,5	6,3					10 μF	7,2																		
	18,5	6	17	2,7													10 μF	2,6	6,8 <i>μ</i> F	3,4	3,3 μF	2,1			1 μF	1,3	0,47 μF	: 1
	18,5	6	17	2,7													12 μF	3,1			3,9 µF	2,5			1,2 μF			
4	18,5	6	17	2,7													15 μF						2,2 μF	2	1,5 μF		0,68 <i>μ</i> F	-
4 NS	18,5	8	17	3,6															8,2 <i>μ</i> F						1,8 μF			
PM 94	18,5	8	17	3,6													22 μF		10 μF	4,9					2,2 μF			
4 N-4 P	18,5		17	4,6													27 μF	7	42 5	F.0					2,7 μF		-	
94 N	18,5		17	4,6													22	0.5							3,3 μF		-	
- ĕ			17	5,5					-										15 μF						3,9 μF			
	18,5		17	6,8															18 μF		12 μ	7,7	5,6 <i>µ</i> F	5,1	4,7 μΕ	6,3	1,8 <i>μ</i> F	5
	18,5		17 17	6,8 7,8													4r μτ	10	22 μF	10			6,8 <i>μ</i> F	6.2				_
	18,5 max	max	max	max																			υ,υ μτ	٥,٤				_
Tolor	ances												رمدر	oiton			± 10%		ur capacit	- 4								

For intermediate value, the dimensions are those of the immediately superior value


Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure

www.exxelia.com - info@exxelia.com 47 Tel : + 33 (0)1 49 23 10 00 Page revised - Version 04/15

PM 907 - PM 907 S


RoHS = W

Radial leads

PM 907 S - PM 907 SB

For space use (EFD 748-09-390 in progress). Contact our sales department.

Sorties radiales

PM 907 S - PM 907 SB

Pour utilisation spatiale (EFD 748-09-390 en cours de qualification). Consulter notre Service Commercial.

DIELECTRIC Metallized polyester

(P.E.T.)

TECHNOLOGY Self-healing, low inductance Thermoplastic case epoxy resin sealed Tinned copper radial leads

OPTIONS

RoHS compliance (W)

MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

Polyester (P.E.T.) métallisé

TECHNOLOGIE

Autocicatrisable, faible inductance Boîtier thermoplastique obturé résine époxy Sorties radiales par fils de cuivre étamé

OPTIONS

Conformité RoHS (W)

MARQUAGE

modèle capacité tolérance tension nominale date-code

Climatic category 55 / 125 / 21 Catégorie climatique ≤ 100.10-4 D. F. Tg δ at 1 kHz Tg δ à 1 kHz for $C_R \le 0.33 \,\mu\text{F}$ ≥ **7500** MΩ Insulation resistance pour C_R ≤ 0,33 μ F Résistance d'isolement for $C_R > 0.33 \,\mu\text{F}$ \geq 2500 M Ω μ F pour $C_R > 0.33 \mu F$ Test voltage (60 s) 1,6 U_{RC} Tension de tenue (60 s) Insulation between leads and case 50000 M Ω Isolement entre bornes réunies et masse Permissible current at 300 kHz up to 105°C Intensité eff. admissible à 300 kHz jusqu'à 105°C IRA at 125°C 0,1 I_{RA} à 125℃ EN 60384-2 / EN 130 000 Measurement and test conditions Conditions de mesures et d'essais

CAP	ACITAN	CE VAL	UES AN	D RATE	D VOL	TAGE ().C.)																	VALE	URS DE	CAPA	ITÉ ET	DE TE	NSION	(U _{RC})
Dim	ension	s (mm				Weight <i>Masse</i>	50	V	63	V		0 V	17	0 V		0 V	25	0 V	40	0 V	50	ν	63	0 V	80	0 V	100	0 V	125	0 V
L	h	е	Х	Υ		g	C _R	I _{RA} (A)	C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA} (A)	C _R	I _{RA} (A)	C _R	I _{RA} (A)	C _R	I _{RA}	C _R	I _{RA}	C _R (µF)	I _{RA} (A)	C _R	I _{RA} (A)	C _R	I _{RA} (A)
20	6,5	20	17,8	10,16	1	4,9	15	5,2	8,2	3,2	4,7	2,5	3,3	2	2,2	2	1,5	1,5	0,82	2,5	0,39	1,1	0,22	0,8	0,22	0,9	4			
20	6,5	20	17,8	10,16	1	4,9			10	4	5,6	3,2	3,9	2,5	2,7	2,4	2,2	2,2	1	3,1	0,47	1,3	0,27	0,9						
20	6,5	20	17,8	10,16	1	4,9			12	5	6,8	4,3	4,7	3,1	3,3	2,8	2,7	2,4			0,56	1,5	0,33	1,1						
20	6,5	20	17,8	10,16	1	4,9					8,2	5,2									0,68	1,9	0,39	1,3						
20	8	20	17,8	10,16	1	6	18	6,2	15	6,3	10	6,4	5,6	4	3,9	3,5	3,3	2,6	1,2	3,2	0,82	2,3	0,47	1,6	0,27	1,1	0,15	0,8	0,082	0,5
20	8	20	17,8	10,16	1	6	22	7,6					6,8	5	4,7	4			1,5	4	1	2,8	0,56	2	0,33	1,4	0,22	1,1	0,1	0,7
20	12,5	20	17,8	10,16	1	9,5	27	9,4	18	7,6	12	6,4	8,2	6	5,6	5	3,9	3,1	1,8	4	1,2	3,3	0,68	2,5	0,39	1,6	0,27	1,4	0,12	0,8
20	12,5	20	17,8	10,16	1	9,5	33	11,5	22	8	15	8	10	7,3	6,8	6	4,7	3,7	2,2	4,5	1,5	4,2	0,82	3	0,47	1,9	0,33	1,7	0,15	1
20	12,5	20	17,8	10,16	1	9,5					18	8			8,2	7	5,6	4,4	2,7	5			1	3,2	0,56	2,3	0,39	2	0,18	1,2
20	12,5	20	17,8	10,16	1	9,5					22	8													0,68	2,8			0,22	1,5
20	20	20	17,8	10,16	1	13,6	47	12,5	27	10	27	10	12	8	10	7,5	6,8	5,4	3,3	5	1,8	5	1,2	3,9	0,82	3,4	0,47	2,5	0,27	1,8
20	20	20	17,8	10,16	1	13,6	56	12,5	33	10	33	10	15	10	12	9,5	8,2	6,5	3,9	5,9	2,2	6,3	1,5	5	1	4,1	0,56	2,9	0,33	2,2
20	20	20	17,8	10,16	1	13,6	68	12,5	39	11,8			18	10			10	7,9	4,7	7,1	2,7	6,3	1,8	5,8			0,68	3,4	0,39	2,6
20	30	20	17,8	10,16	1	20,4	82	12,5	47	12,5	39	12,5	22	10	15	10	12	9,5	5,6	7,9	3,3	6,3	2,2	7,2	1,2	5	0,82	4,3	0,47	3,1
20	30	20	17,8	10,16	1	20,4	100	12,5	56	12,5	47	12,5	27	12,5	18	12,5	15	11,9	6,8	9,6	3,9	8	2,7	8,8	1,5	6,2	1	5,2	0,56	3,7
20	30	20	17,8	10,16	1	20,4							33	12,5	22	12,5	18	12,5	8,2	11,5	4,7	8	3,3	10,8						
31	12,5	32	27,94	15,24	1	21,2			39	8,5	33	9,1	22	7,7	15	7,1	12	5,4	5,6	6,3	3,3	4,5	2,2	3,9	1	2,2	0,68	1,9	0,39	1,4
31	12,5	32	27,94	15,24	1	21,2			47	10,3	39	10,7	27	9,5	18	8,9	15	6,7	6,8	7,6	3,9	5,3	2,7	4,8	1,2	2,6	0,82	2,3	0,47	1,7
31	12,5	32	27,94	15,24	1	21,2			56	12,2	47	13	33	11,4	22	10,1	18	8,1	8,2	9,2	4,7	6,4	3,3	5,9	1,5	3,3	1	2,9	0,56	2
31	22	32		15,24	1	37,3			68	15	56	15	39	15	27	15	22	9,9	10	11,2	5,6	7,9	3,9	7	1,8	4,3	1,2	3,4	0,68	2,4
31	22	32	27,94	15,24	1	37,3			82	15	68	15	47	15	33	15	27	12,1	12	13,4	6,8	9,6	4,7	8,5	2,2	5,2	1,5	4,3	1	3,6
31	22	32		15,24	1	37,3			100	15	82	15	56	15	39	15	33	14,9	15	15	8,2	11,5	5,6	10,1	2,7	6,4	1,8	5,1	1,2	4,3
31	22	32		15,24	1	37,3			120	15	100	15									10	14			3,3	7,8	2,2	6,2	1,5	5,4
31	32	32		15,24	1	54,2			150	15	120	15	68	15	47	15	39	15	18	15	12	15	6,8	12,3	3,9	9,2	2,7	7,7	1,8	6,5
31	32	32		15,24	1	54,2			180	15	150	15	82	15	56	15	47	15	22	15	15	15	8,2	14,7	4,7	11	3,3	9,4	2,2	7,9
31	32	32		15,24	1	54,2							100	15	68	15	56	15					10	15	5,6	12,5	3,9	11		

 \pm 0,5 max \pm 0,5 \pm 0,5 \pm 0,5 $^{+10\%}_{-0,05}$ max Tolerances on dimensions Tolérances dimensionnelles

 $\pm 20\% - \pm 10\%$ Capacitance tolerances / Tolérances sur capacité

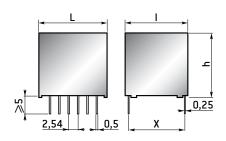
For intermediate value, the dimensions are those of the immediately superior value Low models PM 907 B and PM 907 SB

Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure

Modèles bas PM 907 B et PM 907 SB

Model B: Low profile case W: RoHS S: Quality level Capacitance Capa. tolerance Rated voltage (V_{DC}) Lev B/C/EM: Space level PM 907 1,2 µF \pm 10% 800 V W: RoHS CECC+: Other reliability level Modèle B: Boîtier bas S: Niveau de qualité Capacité Tol. sur capa Tension nom. (V_{ℓ}

48 www.exxelia.com - info@exxelia.com Tel: + 33 (0)1 49 23 10 00 Page revised - Version 04/15


PM 907 N

RoHS = W

"DIL" outputs PM 907 NS - PM 907 NSB

For space use (EFD 748-09-390 in progress). Contact our sales department.

Terminaisons "DIL"

PM 907 NS - PM 907 NSB

Pour utilisation spatiale (EFD 748-09-390 en cours de qualification). Consulter notre Service Commercial.

DIELECTRIC

Metallized polyester (P.E.T.)

TECHNOLOGY Self-healing, low inductance

Thermoplastic case epoxy resin sealed Terminations «DIL» leads

OPTIONS

RoHS compliance (W)

MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

Polyester (P.E.T.) métallisé

TECHNOLOGIE

Autocicatrisable, faible inductance Boîtier thermoplastique obturé résine époxy Sorties terminaisons \ll DIL \gg

OPTIONS

Conformité RoHS (W)

MARQUAGE

modèle capacité tolérance tension nominale date-code

GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Climatic category		55 / 125 / 21		Catégorie climatique
D. F. Tg δ at 1 kHz		≤ 100.10 ⁻⁴		Tg δ à 1 kHz
Insulation resistance	for C _R ≤ 0,33 μF	≥ 7500 MΩ	pour C _R ≤ 0,33 µF	Résistance d'isolement
	for C _R > 0,33 μF	≥ 2500 MΩ μ F	pour C _R > 0,33 μF	
Test voltage (60 s)		1,6 U _{RC}		Tension de tenue (60 s)
Insulation between leads and case		50000 MΩ		Isolement entre bornes réunies et masse
Permissible current at 300 kHz up to 105°C		I _{RA}		Intensité eff. admissible à 300 kHz jusqu'à 105℃
at 125℃		0,1 I _{RA}		à 125℃
Measurement and test conditions		EN 60384-2 / EN 130 000		Conditions de mesures et d'essais

CAP	ACITA	NCE \	/ALUE	S AND RATED V	OLTAG	E (D.C.	.]																VALE	URS D	E CAPA	CITÉ ET	DE TE	NSION	(U _{RC})
Dim	ensi	ons (r	nm)		Weight <i>Masse</i>	5	0 V	63		10	0 V	17	0 V	20	0 V	25	0 V	40	0 V	50	0 V	63	0 V	80	0 V	100	0 V	125	50 V
				Nb connect.	g	C _R (µF)	I _{RA} (A)	C _R (µF)	I _{RA} (A)	C _R (μF)	I _{RA} (A)	C _R (µF)	I _{RA} (A)	C _R (µF)	I _{RA} (A)	C _R (μF)	I _{RA} (A)	C _R (µF)	I _{RA} (A)										
20	6,5	20	17,8	7x2	4,9	15	5,2	8,2	3,2	4,7	2,5	3,3	2	2,2	2	1,5	1,5	0,82	2,5	0,39	1,1	0,22	0,8	0,22	0,9				
20	6,5	20	17,8	7x2	4,9			10	4	5,6	3,2	3,9	2,5	2,7	2,4	2,2	2,2	1	3,1	0,47	1,3	0,27	0,9						
20	6,5	20	17,8	7x2	4,9			12	5	6,8	4,3	4,7	3,1	3,3	2,8	2,7	2,4			0,56	1,5	0,33	1,1						
20	6,5	20	17,8	7x2	4,9					8,2	5,2									0,68	1,9	0,39	1,3						
20	8	20	17,8	7 x 2	6	18	6,2	15	6,3	10	6,4	5,6	4	3,9	3,5	3,3	2,6	1,2	3,2	0,82	2,3	0,47	1,6	0,27	1,1	0,15	0,8	0,082	0,5
20	8	20	17,8	7x2	6	22	7,6					6,8	5	4,7	4			1,5	4	1	2,8	0,56	2	0,33	1,4	0,22	1,1	0,1	0,7
20	12,5	20	17,8	7 x 2	9,5	27	9,4	18	7,6	12	6,4	8,2	6	5,6	5	3,9	3,1	1,8	4	1,2	3,3	0,68	2,5	0,39	1,6	0,27	1,4	0,12	0,8
20	12,5	20	17,8	7x2	9,5	33	11,5	22	8	15	8	10	7,3	6,8	6	4,7	3,7	2,2	4,5	1,5	4,2	0,82	3	0,47	1,9	0,33	1,7	0,15	1
20	12,5	20	17,8	7 x 2	9,5					18	8			8,2	7	5,6	4,4	2,7	5			1	3,2	0,56	2,3	0,39	2	0,18	1,2
20	12,5	20	17,8	7x2	9,5					22	8													0,68	2,8			0,22	1,5
20	20	20	17,8	7x2	13,6	47	12,5	27	10	27	10	12	8	10	7,5	6,8	5,4	3,3	5	1,8	5	1,2	3,9	0,82	3,4	0,47	2,5	0,27	1,8
20	20	20	17,8	7x2	13,6	56	12,5	33	10	33	10	15	10	12	9,5	8,2	6,5	3,9	5,9	2,2	6,3	1,5	5	1	4,1	0,56	2,9	0,33	2,2
20	20	20	17,8	7x2	13,6	68	12,5	39	11,8			18	10			10	7,9	4,7	7,1	2,7	6,3	1,8	5,8			0,68	3,4	0,39	2,6
20	30	20	17,8	7x2	20,4	82	12,5	47	12,5	39	12,5	22	10	15	10	12	9,5	5,6	7,9	3,3	6,3	2,2	7,2	1,2	5	0,82	4,3	0,47	3,1
20	30	20	17,8	7 x 2	20,4	100	12,5	56	12,5	47	12,5	27	12,5	18	12,5	15	11,9	6,8	9,6	3,9	8	2,7	8,8	1,5	6,2	1	5,2	0,56	3,7
20	30	20	17,8	7 x 2	20,4							33	12,5	22	12,5	18	12,5	8,2	11,5	4,7	8	3,3	10,8						
31	12,5	32	27,94	11 x 2	21,2			39	8,5	33	9,1	22	7,7	15	7,1	12	5,4	5,6	6,3	3,3	4,5	2,2	3,9	1	2,2	0,68	1,9	0,39	1,4
31	12,5	32	27,94	11 x 2	21,2			47	10,3	39	10,7	27	9,5	18	8,9	15	6,7	6,8	7,6	3,9	5,3	2,7	4,8	1,2	2,6	0,82	2,3	0,47	1,7
31	12,5	32	27,94	11 x 2	21,2			56	12,2	47	13	33	11,4	22	10,1	18	8,1	8,2	9,2	4,7	6,4	3,3	5,9	1,5	3,3	1	2,9	0,56	2
31	22	32	27,94	11 x 2	37,3			68	15	56	15	39	15	27	15	22	9,9	10	11,2	5,6	7,9	3,9	7	1,8	4,3	1,2	3,4	0,68	2,4
31	22	32	27,94	11 x 2	37,3			82	15	68	15	47	15	33	15	27	12,1	12	13,4	6,8	9,6	4,7	8,5	2,2	5,2	1,5	4,3	1	3,6
31	22	32	27,94	11 x 2	37,3			100	15	82	15	56	15	39	15	33	14,9	15	15	8,2	11,5	5,6	10,1	2,7	6,4	1,8	5,1	1,2	4,3
31	22	32	27,94	11 x 2	37,3			120	15	100	15									10	14			3,3	7,8	2,2	6,2	1,5	5,4
31	32	32	27,94	11 x 2	54,2			150	15	120	15	68	15	47	15	39	15	18	15	12	15	6,8	12,3	3,9	9,2	2,7	7,7	1,8	6,5
31	32	32	27,94	11 x 2	54,2			180	15	150	15	82	15	56	15	47	15	22	15	15	15	8,2	14,7	4,7	11	3,3	9,4	2,2	7,9
31	32	32	27,94	11 x 2	54,2							100	15	68	15	56	15					10	15	5,6	12,5	3,9	11		

 \pm 0,5 max \pm 0,5 \pm 0,5 \pm 0,5 $^{+10\%}_{-0,05}$ max

Tolerances on dimensions

± 20% - ± 10% Capacitance tolerances / Tolérances sur capacité

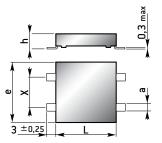
For intermediate value, the dimensions are those of the immediately superior value

Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure

Low models PM 907 N - B

Modèles bas PM 907 N - B

HOW TO ORDER							EXEMPLE DE C	ODIFICATION À LA COMMANDE
Model	N: Outputs	B: Low profile case	W: RoHS	S: Quality level	Capacitance	Capa. tolerance	Rated voltage (V _{DC})	Lev B/C/EM: Space level
PM 907	-	-	-	_	1,2 µF	± 10%	800 V	_
Modèle	N: Sorties	B : Boîtier bas	W : RoHS	S : Niveau de qualité	Capacité	Tol. sur capa.	Tension nom. (V_{CC})	CECC+ : Other reliability level


PM 907 R 1 - PM 907 R 2

RoHS = W

SMD leads / Sorties CMS Models / Modèles PM 907 R 1

PM 907 R•S - PM 907 R•SB For space use (EFD 748-09-390 in progress). Contact our sales department.

SMD leads / Sorties CMS Models / Modèles PM 907 R 2

PM 907 R•S - PM 907 R•SB Pour utilisation spatiale (EFD 748-09-390 en cours de qualification). Consulter notre Service Commercial.

DIELECTRIC Metallized polyester

Thermoplastic case epoxy resin sealed Surface mount device

OPTIONS RoHS compliance (W) model capacitance tolerance rated voltage date-code

MARKING

DIÉLECTRIQUE Polyester (P.E.T.) métallisé

TECHNOLOGIE Autocicatrisable, faible inductance Boîtier thermoplastique obturé résine époxy Sorties pour report à plat

Conformité RoHS (W)

max

3 ±0,25

MARQUAGE modèle capacité tolérance tension nominale date-code

(P.E.T.)

TECHNOLOGY Self-healing, low inductance

GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Climatic category		55 / 125 / 21		Catégorie climatique
D. F. Tg δ at 1 kHz		≤ 100.10 ⁻⁴		Tg δ à 1 kHz
Insulation resistance	for C _R ≤ 0,33 μF	≥ 7500 MΩ	pour C _R ≤ 0,33 μF	Résistance d'isolement
	for $C_R > 0.33 \mu\text{F}$	\geq 2500 M Ω μ F	pour C _R > 0,33 μF	
Test voltage (60 s)		1,6 U _{RC}		Tension de tenue (60 s)
Insulation between leads and case		50000 M Ω		Isolement entre bornes réunies et masse
Permissible current at 300 kHz up to 105°C		I _{RA}		Intensité eff. admissible à 300 kHz jusqu'à 105℃
at 125°C		0,1 I _{RA}		à 125℃
Measurement and test conditions		EN 60384-19 / EN 130 000		Conditions de mesures et d'essais

R ET RW SMD MODEL (SURFACE MOUNT DEVIC	E) R AND RW						MODĖL	ES POUR UTIL	ISATION CMS	(MONTAGE EI	N SURFACE)
Iron soldering										Sou	udage au fer
Soldering conditions according to CECC 00802	2		Class B / Cl	asse B				Condi	tions de soud	lage suivant C	ECC 00802
Max. soldering temperature by solder reflow			215°C/20 to	/à 40 s.				Tem	oérature max.	. de soudage ¡	oar refusion
CAPACITANCE VALUES AND RATED VOLTAGE (D.	.C.)							VALE	JRS DE CAPAC	CITÉ ET DE TEI	NSION (U _{RC})
Dimensions (mm) Weight Masse	50 V 6	3 V 100 V	170 V	200 V	250 V	400 V	500 V	630 V	800 V	1000 V	1250 V
	Co los Co	la. Ca la.	Co los	Co los	Co los	Co los	Co los	Co los	Co los	Co los	Co los

CAP	ACITANO	CE VALI	JES AN	D RATE	D VOL	TAGE (I	D.C.)																	VALE	URS DE	CAPA	CITÉ ET	DE TE	NSION	(U _{RC})
Dim	ension	s (mm				Weight <i>Masse</i>	5	0 V	63	٧		0 V	17	0 V	20	0 V	25	0 V	40	0 V		0 V	63	0 V	80	0 V	100	0 V	125	0 V
L		е		Х			C _R	I _{RA}																						
20	6.5	20	15	10	2.5	4,9	15	5.2	8.2	3,2	4.7	2.5	3.3	2	2.2	2	1.5	1.5	0.82	2.5	0.39	1.1	0.22	0.8	0.22	0.9	(μ.,)	(**)	(μ.)	(**)
20	6,5	20	15	10	2,5	4,9			10	4	5,6	3,2	3,9	2,5	2,7	2,4	2,2	2,2	1	3,1	0,47	1,3	0,27	0,9	- /	.,.				
20	6,5	20	15	10	2,5	4,9			12	5	6,8	4,3	4,7	3,1	3,3	2,8	2,7	2,4			0,56	1,5	0,33	1,1						
20	6,5	20	15	10	2,5	4,9					8,2	5,2									0,68	1,9	0,39	1,3						
20	8	20	15	10	2,5	6	18	6,2	15	6,3	10	6,4	5,6	4	3,9	3,5	3,3	2,6	1,2	3,2	0,82	2,3	0,47	1,6	0,27	1,1	0,15	0,8	0,082	0,5
20	8	20	15	10	2,5	6	22	7,6					6,8	5	4,7	4			1,5	4	1	2,8	0,56	2	0,33	1,4	0,22	1,1	0,1	0,7
20	12,5	20	15	10	2,5	9,5	27	9,4	18	7,6	12	6,4	8,2	6	5,6	5	3,9	3,1	1,8	4	1,2	3,3	0,68	2,5	0,39	1,6	0,27	1,4	0,12	0,8
20	12,5	20	15	10	2,5	9,5	33	11,5	22	8	15	8	10	7,3	6,8	6	4,7	3,7	2,2	4,5	1,5	4,2	0,82	3	0,47	1,9	0,33	1,7	0,15	1
20	12,5	20	15	10	2,5	9,5					18	8			8,2	7	5,6	4,4	2,7	5			1	3,2	0,56	2,3	0,39	2	0,18	1,2
20	12,5	20	15	10	2,5	9,5					22	8													0,68	2,8			0,22	1,5
20	20	20	15	10	2,5	13,6	47	12,5	27	10	27	10	12	8	10	7,5	6,8	5,4	3,3	5	1,8	5	1,2	3,9	0,82	3,4	0,47	2,5	0,27	1,8
20	20	20	15	10	2,5	13,6	56	12,5	33	10	33	10	15	10	12	9,5	8,2	6,5	3,9	5,9	2,2	6,3	1,5	5	1	4,1	0,56	2,9	0,33	2,2
20	20	20	15	10	2,5	13,6	68	12,5	39	11,8			18	10			10	7,9	4,7	7,1	2,7	6,3	1,8	5,8			0,68	3,4	0,39	2,6
20	30	20	15	10	2,5	20,4	82	12,5	47	12,5	39	12,5	22	10	15	10	12	9,5	5,6	7,9	3,3	6,3	2,2	7,2	1,2	5	0,82	4,3	0,47	3,1
20	30	20	15	10	2,5	20,4	100	12,5	56	12,5	47	12,5	27	12,5	18	12,5	15	11,9	6,8	9,6	3,9	8	2,7	8,8	1,5	6,2	11	5,2	0,56	3,7
20_	30	20	15	10	2,5	20,4							33	12,5	22	12,5	18	12,5	8,2	11,5	4,7	8	3,3	10,8						
31	12,5	32	24	15	4	21,2			39	8,5	33	9,1	22	7,7	15	7,1	12	5,4	5,6	6,3	3,3	4,5	2,2	3,9	1	2,2	0,68	1,9	0,39	1,4
31	12,5	32	24	15	4	21,2			47	10,3	39	10,7	27	9,5	18	8,9	15	6,7	6,8	7,6	3,9	5,3	2,7	4,8	1,2	2,6	0,82	2,3	0,47	1,7
31	12,5	32	24	15	4	21,2			56	12,2	47	13	33	11,4	22	10,1	18	8,1	8,2	9,2	4,7	6,4	3,3	5,9	1,5	3,3	1	2,9	0,56	2
31	22	32	24	15	4	37,3			68	15	56	15	39	15	27	15	22	9,9	10	11,2	5,6	7,9	3,9	7	1,8	4,3	1,2	3,4	0,68	2,4
31	22	32	24	15	4	37,3			82	15	68	15	47	15	33	15	27	12,1	12	13,4	6,8	9,6	4,7	8,5	2,2	5,2	1,5	4,3	1	3,6
31	22	32	24	15	4_	37,3			100	15	82	15	56	15	39	15	33	14,9	15	15	8,2	11,5	5,6	10,1	2,7	6,4	1,8	5,1	1,2	4,3
31	22	32	24	15	4	37,3			120	15	100	15	CO	15	47	15	39	15	10	15	10	14	r 0	12.2	3,3	7,8	2,2	6,2	1,5	5,4
31	32	32 32	24	15 15	4	54,2 54.2			150 180	15 15	120 150	15 15	68 82	15 15	47 56	15 15	39 47	15 15	18 22	15 15	12 15	15 15	6,8	12,3	3,9 4.7	9,2	2,7 3,3	7,7 9,4	1,8 2,2	6,5 7,9
31	32	32	24	15	4	54,2			100	15	130	13	100	15	68	15	56	15	- ۲.	13	15	13	8,2 10	15	5,6	12.5	3,9	9,4	۷,۷	۳,۶

 $~\pm~0,5~~\text{max}~~\pm~0,5~~\pm~0,5~~\pm~0,5~~^{+10\%}_{-0,05}~~\text{max}$ Tolerances on dimensions Tolérances dimensionnelles

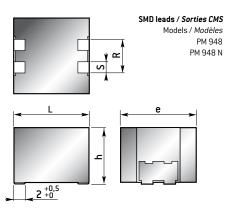
 \pm 20% - \pm 10% Capacitance tolerances / Tolérances sur capacité

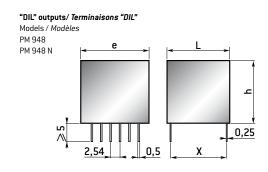
For intermediate value, the dimensions are those of the immediately superior value

Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure

Modèles bas PM 907 R et PM 907 B

Low models PM 907 R and PM 907 B


HOW TO ORDER							EXEMPLE DE C	ODIFICATION À LA COMMANDE
Model	R1, R2: Sorties CMS	B: Low profile case	W: RoHS	S: Quality level	Capacitance	Capa. tolerance	Rated voltage (VDC)	Lev B/C/EM : Space level
PM 907	-	-	ı	-	1,2 µF	± 10%	800 V	_
Modèle	R1, R2 : Sorties CMS	B : Boîtier bas	W : RoHS	S : Niveau de qualité	Capacité	Tol. sur capa.	Tension nom. (V _{CC})	CECC+ : Other reliability level


50 www.exxelia.com - info@exxelia.com Tel:+33 (0)1 49 23 10 00 Page revised - Version 04/15

PM 948 - PM 948 N

Modèles/Models	R ± 0,2	S ± 0,2
PM 948-1 - PM 948 S-1	5	1,5
PM 948-2 - PM 948 S-2	5	1,5
PM 948-3 - PM 948 S-3	7	2
PM 948-4 - PM 948 S-4	7	2

Modèles/Models	X ± 0,4	Nb. connexions
PM 948 N-1 - PM 948 NS-1	8,25	4 x 2
PM 948 N-2 - PM 948 NS-2	14	4 x 2
PM 948 N-3 - PM 948 NS-3	14	5 x 2
PM 948 N-4 - PM 948 NS-4	15,24	6 x 2

R ET RW SMD MODEL (SURFACE MOUNT DEVICE) R AND RW		MODÈLES POUR UTILISATION CMS (MONTAGE EN SURFACE)
Soldering conditions according to CECC 00802	Class B / Classe B	Conditions de soudage suivant CECC 00802
Max. soldering temperature by solder reflow	215°C/20 to/à 40 s.	Température max. de soudage par refusion

PM 948 S-PM 948 NS For space use [EFD 741.390 in progress]. Contact our sales department.
PM 948 S-PM 948 NS Pour utilisation spatiale (EFD 741.390 en cours de qualification). Consulter notre Service Commercial.

CAPACI	TANCE VA	LUES AND	RATED V	OLTAGE (D	.C.)												VALEUI	RS DE CAPA	CITÉ ET	DE TENSIO	N (U _{RC})
Dimen	sions (mr	n)	Weight Masse	50	٧	63		100	D V	170	V	200	V	250	V	400	٧	500	V	630	٧
L	h	е	g	C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA}
								PM 94	8-1 PM 9	948 S-1 • P	M 948 N	N-1 PM 948	NS-1								
10,7	6	10,7	1	2,2 <i>μ</i> F	1,3	1 <i>µ</i> F	1,1	0,56 <i>μ</i> F	0,7	0,33 μF	0,5	0,22 <i>μ</i> F	0,7	0,18µF	0,3	0,068 <i>µ</i> F	0,4	0,033 μF	0,2	0,022 <i>μ</i> F	0,2
10,7	6	10,7	1	2,7μF	1,6	1,2 μF	1,3	0,68 <i>μ</i> F	0,8	0,39 <i>μ</i> F	0,6	0,27 <i>μ</i> F	0,8	0,22 <i>μ</i> F	0,4	0,082 <i>μ</i> F	0,5	0,039 μF	0,3	0,027 <i>μ</i> F	0,2
10,7	6	10,7	1	3,3 <i>μ</i> F	1,9	1,5 μF	1,7	0,82 μF	0,9	0,47 μF	0,7	0,33 μF	1,0	0,27 μF	0,5	0,1 <i>μ</i> F	0,6	0,047 μF	0,4	0,033 μF	0,3
10,7	6	10,7	1			1,8 μF	2,1	1 <i>μ</i> F	1,2	0,56 μF	0,8	0,39 <i>μ</i> F	1,1	0,33 μF	0,6	0,12 μF	0,7	0,056 μF	0,4	0,039 μF	0,4
10,7	6	10,7	1													0,15 μF	0,9	0,068 μF	0,5		
10,7	8	10,7	1,3	3,9 <i>µ</i> F	2,3	2,2 <i>μ</i> F	2,5	1,2 μF	1,4	0,68 μF	1	0,47 μF	1,5	0,39 <i>μ</i> F	0,8	0,18 <i>μ</i> F	1,0	0,082 μF	0,7	0,047 μF	0,5
10,7	8	10,7	1,3	4,7 μF	2,8	2,7 μF	3,1	1,5 μF	1,8	0,82 μF	1,1	0,56 μF	1,6	0,47 μF	1,0	0,22 <i>μ</i> F	1,3	0,1 μF	0,8	0,056 μF	0,6
10,7	8	10,7	1,3					1,8 μF	2,1												
10,7	10	10,7	1,7	5,6 <i>μ</i> F	3,3	3,3 <i>µ</i> F	3,8	2,2 µF	2,6	1 μF	1,4	0,68 <i>μ</i> F	2,1	0,56 μF	1,1	0,27 μF	1,6	0,12 μF	1,0	0,068 μF	0,7
10,7	10	10,7	1,7	6,8 <i>µ</i> F	4,1	3,9 <i>µ</i> F	4,9	2,7 μF	3,2	1,2 μF	1,8	0,82 <i>µ</i> F	2,5	0,68μF	1,4			0,15 µF	1,2	0,082 <i>μ</i> F	1,0
10,7	10	10,7	1,7																	0,1 <i>μ</i> F	1,1
10,7	12	10,7	2	8,2 <i>µ</i> F	4,9	4,7 μF	6,0	3,3 <i>µ</i> F	3,9	1,5 μF	2,1	1 μF	3,1	0,82 μF	1,7	0,33 <i>μ</i> F	2,0	0,18 μF	1,4	0,12 μF	1,3
10,7	12	10,7	2	10 <i>μ</i> F	6	5,6 μF	7,1			1,8 <i>µ</i> F	2,6	1,2 <i>µ</i> F	3,2	1 <i>μ</i> F	2,1	0,39 <i>µ</i> F	2,3				
								PM 94	8-2 PM 9	148 S-2 • P	M 948 N	N-2 PM 948	NS-2			66					
15,5	6	11,5	1,6	4,7 μF	1,4	2,2 <i>μ</i> F	1,3	1,5 µF	0,9	0,82 μF	0,6	0,56 μF	0,8	0,47 μF	0,8	0,18 <i>μ</i> F	0,5	0,12 μF	0,4	0,068 μF	0,3
15,5	6	11,5	1,6	5,6 <i>μ</i> F	1,7	2,7 μF	1,5	1,8 <i>µ</i> F	1,1	1 μF	0,7	0,68 <i>µ</i> F	1,0	0,56 μF	0,9	0,22 <i>μ</i> F	0,6	0,15 <i>μ</i> F	0,5	0,082 μF	0,3
15,5	6	11,5	1,6	6,8 <i>µ</i> F	2,1	3,3 <i>µ</i> F	1,9	2,2 µF	1,3	1,2 μF	0,9	0,82 <i>μ</i> F	1,2	0,68μF	1,1	0,27 μF	0,8	0,18 μF	0,7	0,1 μF	0,4
15,5	6	11,5	1,6			3,9 <i>µ</i> F	2,3	2,7 µF	1,7	1,5 μF	1,1	1 μF	1,3	0,82 μF	1,3	0,33 <i>μ</i> F	1,0	0,22μF	0,8	0,12 μF	0,5
15,5	8	11,5	2,1	8,2 <i>µ</i> F	2,5	4,7 μF	2,8	3,3 <i>µ</i> F	2,0	1,8 µF	1,4	1,2 <i>μ</i> F	1,7	1 μF	1,6	0,39 <i>μ</i> F	1,1	0,27 μF	1,0	0,15 <i>μ</i> F	0,7
15,5	8	11,5	2,1	10 <i>μ</i> F	3,1	5,6 μF	3,3	3,9 <i>µ</i> F	2,4	2,2 μF	1,7	1,5 <i>μ</i> F	2,0	1,2 μF	2,0	0,47 μF	1,4	0,33μF	1,2	0,18 μF	1,0
15,5	10	11,5	2,6	12 μF	3,7	6,8 <i>µ</i> F	4,0	4,7 μF	2,8	2,7 μF	2,1	1,8 <i>μ</i> F	2,6	1,5 <i>μ</i> F	2,5	0,56 <i>μ</i> F	1,7	0,39μF	1,4	0,22 <i>μ</i> F	1,1
15,5	10	11,5	2,6	15 <i>μ</i> F	4,6	8,2 μF	4,8	5,6 μF	3,4	3,3 µF	2,5	2,2 μF	3,0	1,8 <i>μ</i> F	3,0	0,68μF	2,0	0,47 μF	1,7	0,27 μF	1,4

max Tolerances on dimensions Tolérances dimension-nelles

 \pm 20% - \pm 10%

Capacitance tolerances / Tolérances sur capacité

For intermediate value, the dimensions are those of the immediately superior value

Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure

HOW TO O	RDER							EXEMPLE D	E CODIFICATION À LA COMMANDE
Model	N: Outputs	Case	UL: Flame retardant	W:RoHS	S, F: Quality level	Capacitance	Capa. tolerance	Rated voltage (V _{DC})	Lev B/C/EM : Space level
PM 948	_	4	-	_	-	10 μF	± 20%	100 V	_
Modèle	N: Sorties	Boîtier	UL : Auto-extinguible	W : RoHS	S, F : Niveau de qualité	Capacité	Tol. sur capa.	Tension nom. (V_{CC})	CECC+: Other reliability level

PM 948 - PM 948 N

RoHS = W

DIELECTRIC

Metallized polyester (P.E.T.)

TECHNOLOGY Self-healing, low inductance Thermoplastic case Epoxy resin sealed Surface mount device (PM 948 - PM 948 S) Terminations "DIL" leads (PM 948 N - PM 948 NS) MARKING model capacitance tolerance rated voltage date-code **DIÉLECTRIQUE** Polyester (P.E.T.) métallisé

TECHNOLOGIE
Autocicatrisable,
faible inductance

Boîtier thermoplastique Obturé résine époxy Sorties pour report à plat (PM 948 - PM 948 S) Sorties terminaisons "DIL" (PM 948 N - PM 948 NS)

MARQUAGE modèle capacité tolérance tension nominale date-code

GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Operating temperature		−55°C +125°C		Température d'utilisation
Climatic category	(PM 948 - PM 948 S)	55 / 125 / 21	(PM 948 - PM 948 S)	Catégorie climatique
Climatic category	(PM 948 N - PM 948 NS)	55 / 125 / 56	(PM 948 N - PM 948 NS)	Catégorie climatique
D. F. Tg δ at 1 kHz	for CR ≤ 1 μF	≤ 80.10 ⁻⁴	pour CR ≤ 1 μF	Tg δ à 1 kHz
	for CR $> 1 \mu$ F	≤ 100.10 ⁻⁴	pour CR > 1 μF	
Insulation resistance	for $C_R \le 0.33 \mu\text{F}$ and $\le 100 \text{V}_{DC}$	≥ 3750 MΩ	$pour C_R \le 0.33 \mu\text{F et} \le 100 V_{CC}$	Résistance d'isolement
	and $> 100 \mathrm{V}_{\mathrm{DC}}$	≥ 7500 MΩ	$et > 100 V_{CC}$	
	for $C_R > 0.33 \mu\text{F}$ and $\leq 100 \text{V}_{DC}$	\geq 1250 M Ω μ F	$pour C_R > 0.33 \mu F et \le 100 V_{CC}$	
	and $> 100 \mathrm{V}_{\mathrm{DC}}$	\geq 2500 M Ω μ F	$et > 100 V_{CC}$	
Test voltage		1,6 U _{RC}		Tension de tenue
Insulation between leads and case		50000 M Ω		Isolement entre bornes réunies et masse
Permissible current at 300 kHz up to 105°C		I _{RA}		Intensité eff. admissible à 300 kHz jusqu'à 105°C
at 125°C		0,1 I _{RA}		à 125℃
Measurement and test conditions		EN 60384-19 / EN 130 (000	Conditions de mesures et d'essais

CAPACIT	ANCE VA	LUES AND	RATED V	OLTAGE (D	.C.)												VALEU	RS DE CAPA	CITÉ ET	DE TENSIO	N (U _{RC})
Dimens	ions (mr	n)	Weight <i>Masse</i>	50	٧	63	8 V	10	0 V	170	V	200	V	250	V	400	V	500	V	630	٧
L	h	е	g	C _R	I _{RA}	C _R	I _{RA}	C _R		C _R		C _R		C _R		C _R		C _R		C _R	I _{RA}
								PM 94	8-3 PM 9	948 S-3 • P	M 948 N	-3 PM 948	NS-3								
16,5	6	15,5	2,2	6,8 <i>µ</i> F	1,9	3,3 <i>µ</i> F	1,8	2,7 μF	1,5	1,5 μF	1,0	1 μF	1,3	0,82 <i>μ</i> F	0,7	0,33 <i>μ</i> F	0,9	0,22μF	0,7	0,12 μF	0,5
16,5	6	15,5	2,2	8,2 <i>μ</i> F	2,3	3,9 <i>µ</i> F	2,1	3,3 <i>µ</i> F	1,9	1,8 μF	1,3	1,2 <i>μ</i> F	1,6	1 μF	0,9	0,39 <i>μ</i> F	1,0	0,27 μF	0,9	0,15 <i>μ</i> F	0,6
16,5	6	15,5	2,2	10 <i>μ</i> F	2,9	4,7 μF	2,6	3,9 <i>µ</i> F	2,2	2,2 µF	1,6	1,5 <i>μ</i> F	1,8	1,2 µF	1,1	0,47 μF	1,3			0,18 μF	0,7
16,5	6	15,5	2,2	12 μF	3,4	5,6 <i>μ</i> F	3,1														
16,5	8	15,5	3	15 <i>μ</i> F	4,3	6,8 <i>µ</i> F	3,7	4,7 μF	2,7	2,7 μF	1,9	1,8 <i>µ</i> F	2,4	1,5 <i>μ</i> F	1,4	0,56 <i>μ</i> F	1,5	0,33 μF	1,1	0,22 <i>μ</i> F	0,9
16,5	8	15,5	3	18 μF	5,2	8,2 µF	4,5	5,6 <i>μ</i> F	3,2	3,3 <i>µ</i> F	2,4	2,2 <i>μ</i> F	2,9	1,8 <i>µ</i> F	1,7	0,68 <i>μ</i> F	1,8	0,39 <i>μ</i> F	1,3	0,27 μF	1,1
16,5	8	15,5	3									2,7 <i>μ</i> F	3,0	2,2 µF	2,1	0,82 <i>μ</i> F	2,2	0,47 μF	1,6	0,33 <i>μ</i> F	1,3
16,5	10	15,5	3,7	22 <i>µ</i> F	6,3	10 μF	5,5	6,8 <i>µ</i> F	3,9	3,9 <i>µ</i> F	2,8	3,3 <i>µ</i> F	3,8	2,7 µF	2,6	1 μF	2,7	0,56 μF	1,9	0,39 <i>μ</i> F	1,6
16,5	10	15,5	3,7			12 μF	6,6	8,2 <i>µ</i> F	4,7	4,7 μF	3,4					1,2 <i>μ</i> F	3,2	0,68 μF	2,3		
16,5	12	15,5	4,7	27 μF	7,8	15 μF	8,3	10 μF	5,7	5,6 μF	4,0	3,9 <i>µ</i> F	4,2	3,3 µF	3,2			0,82 <i>μ</i> F	2,8	0,47 μF	2,0
16,5	12	15,5	4,7																	0,56 μF	2,4
16,5	14	15,5	5,2	33 μF	9,5	18 μF	9,9	12 μF	6,8	6,8 <i>μ</i> F	4,9	4,7 μF	5,0	3,9 µF	3,8	1,5 μF	4,0	1 <i>μ</i> F	3,4		
16,5	14	15,5	5,2													1,8 <i>µ</i> F	4,8				
16,5	17	15,5	6,3			22 <i>µ</i> F	12,1	15 <i>μ</i> F	8,5	8,2 μF	5,9	5,6 <i>μ</i> F	5,4	4,7 μ F	4,6	2,2 <i>µ</i> F	5,9	1,2 <i>μ</i> F	4,0	0,68 μF	2,9
								PM 94	8-4 PM 9	948 S-4 • P	M 948 N	-4 PM 948	NS-4			S					
18,5	6	17	2,7	10 μF	2,6	4,7 μF	2,3	3,9 <i>µ</i> F	2,0	2,2 <i>μ</i> F	1,4	1,5 <i>μ</i> F	1,8	1,2 μF	1,0	0,47 μF	1,0	0,27 μF	0,7	0,18 μF	0,6
18,5	6	17	2,7	12 μF	3,1	5,6 μF	2,8	4,7 μF	2,4	2,7 μF	1,7	1,8 <i>µ</i> F	2,0	1,5 μF	1,3	0,56 <i>μ</i> F	1,3	0,33 μF	0,9	0,22 μF	0,7
18,5	6	17	2,7	15 <i>μ</i> F	3,9	6,8μF	3,4	5,6 <i>μ</i> F	2,9									0,39 μF	1,1		
18,5	8	17	3,6	18 μF	4,6	8,2 μF	4,0			3,3 µF	2,1	2,2 μF	2,6	1,8 µF	1,6	0,68 μF	1,6	0,47 μF	1,3	0,27 μF	0,9
18,5	8	17	3,6	22 <i>μ</i> F	5,7	10 μF	4,9	6,8 <i>µ</i> F	3,4	3,9 µF	2,5	2,7 μF	3,2	2,2 µF	2,0	0,82 μF	2,0	0,56 μF	1,6	0,33 μF	1,1
18,5	8	17	3,6					8,2 μF	4,2									0,68 μF	2,0		
18,5	10	17	4,6	27 μF	7,0	12 μF	5,9	10 μF	5,1	4,7 μF	3	3,3 <i>µ</i> F	3,9	2,7 μF	2,4	1 <i>μ</i> F	2,4	0,82 μF	2,5	0,39 μF	1,4
18,5	10	17	4,6			15 μF	7,4	12 μF	6,1	5,6 μF	3,6	3,9 <i>µ</i> F	4,0	3,3 <i>µ</i> F	3,0	1,2 μF	2,9			0,47 μF	1,6
18,5	12	17	5,5	33 μF	8,5	18 μF	8,9			6,8 μF	4,3	4,7 μF	4,7	3,9 µF	3,5	1,5 μF	3,6	1μF	3,0	0,56 μF	2,0
18,5	12	17	5,5					15 <i>μ</i> F	7,6	8,2 <i>μ</i> F	5,2					1,8 <i>μ</i> F	4,3			0,68 μF	2,5
18,5	15	17	6,8	39 <i>μ</i> F	1,0	22 <i>µ</i> F	10	18 <i>μ</i> F	9,1	10 μF	6,4	5,6 μF	5,4	4,7 μF	4,3	2,2 µF	5,3	1,2 μF	3,6	0,82 μF	3,1
18,5	15	17	6,8	47 μF	12,2							6,8 µF	5,5	5,6 μF	5,1			1,5 μF	4,5	1μF	3,7
18,5	17	17	7,8			27 μF	12,2	22 <i>µ</i> F	11,2	12 μF	7,7	8,2 <i>µ</i> F	6,2	6,8 <i>µ</i> F	6,2	2,7 µF	6,5	1,8 <i>μ</i> F	5,6	1,2 μF	4,5

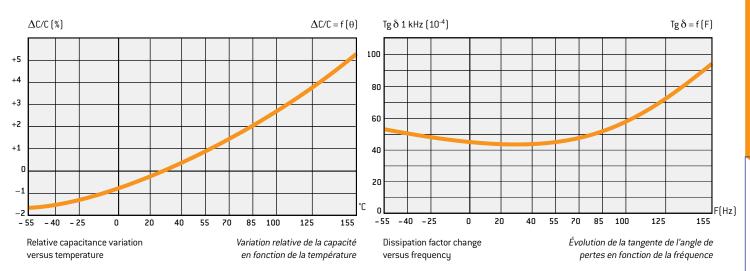
nax max max max
Tolerances on dimensions
Tolérances dimensionnelles

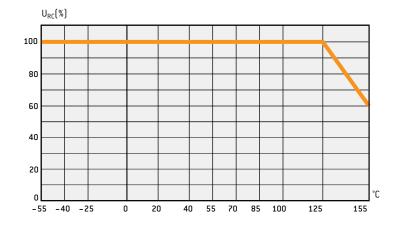
 $\pm~20\% - \pm~10\%$ Capacitance tolerances / Tolérances sur capacité

For intermediate value, the dimensions are those of the immediately superior value

Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure

HOW TO O	RDER							EXEMPLE D	E CODIFICATION À LA COMMANDE
Model	N:Outputs	Case	UL: Flame retardant	W:RoHS	S, F: Quality level	Capacitance	Capa. tolerance	Rated voltage (V _{DC})	Lev B/C/EM : Space level
PM 948	_	2	-	ı	-	1 μF	± 10%	250 V	_
Modèle	N : Sorties	Boîtier	UL : Auto-extinguible	W :RoHS	S, F : Niveau de qualité	Capacité	Tol. sur capa.	Tension nom. (V _{CC})	CECC+ : Other reliability level




PHM 912

RoHS = W

TYPICAL PERFORMANCES VERSUS TEMPERATURE (AT 1 kHZ)

COMPORTEMENT TYPIQUE EN FONCTION DE LA TEMPÉRATURE (À 1 KHZ)

Operating temperature range from -55°C at $+\ 155^{\circ}\text{C}$: with a voltage derating over 125 $^{\circ}\text{C}$

Gamme de températures d'utilisation de −55°C à + 155°C : avec un derating sur la tension nominale au delà de 125°C

Thanks to their high quality and reliability, the metallized plastic film capacitors of EXXELIA TECHNOLOGIES are widely used in different high performance demanding applications.

The evolution of electronic equipment towards ever increasing miniaturization requires smaller and smaller components. This trend is even more pronounced in the field of high professional electronic segments including space, aerospace and defense markets. The new plastic film technology of PHM 912 capacitors responds to the need for better energy density having a very high dielectric strength in operating conditions up to 155°C.

The PHM 912 capacitors are specifically designed for DC filtering or energy storage. They are well-adapted for applications such as filtering in H.F. switch mode power supplies, DC link or decoupling capacitors, but also offer high-temperature performances. With their stable temperature and frequency characteristics and high energy density, these capacitors allow highly integrated power filters. They have a compact construction which results in a low ESR, ESL and excellent high current and frequency performances.

The PHM 912 series made great advances over previous technologies by combining the benefits of excellent temperature resistance with superior energy densities, making it one of the most compact capacitors on the market.

Grâce à leur niveau de qualité et de fiabilité, les condensateurs film plastique métallisé d'EXXELIA TECHNOLOGIES sont largement utilisés dans différentes applications exigeant une haute performance. L'évolution de l'électronique vers une miniaturisation accrue implique, une demande croissante vers des composants toujours plus petits. Cette tendance est encore plus marquée dans les domaines du spatial, de l'aéronautique et de la défense. La nouvelle technologie des condensateurs film plastique métallisé du PHM 912 propose une meilleure densité énergétique grâce à son excellente tenue diélectrique dans des conditions d'utilisation allant jusqu'à 155°C.

La gamme PHM 912 a été spécialement conçue pour le filtrage en tension continue et le stockage d'énergie. Ces condensateurs sont parfaitement adaptés pour des applications telles que le filtrage dans des alimentations à découpage H. F., ou utilisés comme des condensateurs DC link ou de découplage. Ils offrent également de bonnes performances en haute température. Avec des caractéristiques stables en température et fréquence et une densité d'énergie élevée, ces condensateurs permettent une meilleure miniaturisation des filtres de puissance. Ils présentent une structure compacte qui permet d'attendre de faibles ESR, ESL, forts courants et hautes performances fréquentielles.

Le PHM 912 surpasse les autres technologies en combinant une excellente tenue en température et une meilleure densité énergétique. Il se positionne ainsi parmi les condensateurs les plus compacts du marché.

PHM 912

RoHS = W

DIELECTRIC

Metallized plastic film

TECHNOLOGY

Self-healing, low inductance Thermoplastic case epoxy

resin sealed Tinned copper radial leads

OPTIONS

RoHS compliance (W) Flame retardant (UL)

MARKING

model capacitance tolerance rated voltage date-code

Radial leads

DIÉLECTRIQUE

W

Film plastique métallisé

TECHNOLOGIE

Autocicatrisable, faible inductance Boîtier thermoplastique

obturé résine époxy Sorties radiales par fils de

cuivre étamé

OPTIONS Conformité RoHS (W) Auto-extinguible (UL)

Sorties radiales

MARQUAGE

modèle capacité tolérance tension nominale date-code

GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Climatic category		55 / 155 / 21		Catégorie climatique
D. F. Tg δ at 1 kHz		≤ 60.10 ⁻⁴		Tg δ à 1 kHz
Insulation resistance	for C _R ≤ 0,33 μF	≥ 7500 MΩ	pour C _R ≤ 0,33 μF	Résistance d'isolement
	for C _R > 0,33 μF	≥ 2500 MΩ μ F	pour C _R > 0,33 μF	
Test voltage (60 s)		1,6 U _{RC}		Tension de tenue (60 s)
Insulation between leads and case		50000 MΩ		Isolement entre bornes réunies et masse
Permissible current at 300 kHz up to 105°C		I _{RA}		Intensité eff. admissible à 300 kHz jusqu'à 105°C
at 155°C		0,1 I _{RA}		à 155℃
Measurement and test conditions		FN 60384-2 / FN 130 000		Conditions de mesures et d'essais

CAPACITA	NCE VALUE	S AND RAT	TED VOLTAG	E (D.C.)										V.	ALEURS DE	CAPACITÉ I	ET DE TENS	ION (U _{rc}
Dimensio	ons (mm)					Weight <i>Masse</i>	25	0 V	40	10 V	50	0 V	63	0 V	80	0 V	100	00 V
L	h	е	Х	Y	W	g	C _R (µF)	I _{RA} (A)										
20	6,5	20	17,8	10,16	1	4,9	1,8	1,5	1	1,6	0,47	1,1	0,27	0,8	0,27	0,9		
20	6,5	20	17,8	10,16	1	4,9	2,2	2,2	1,2	2	0,56	1,3	0,33	0,9				
20	6,5	20	17,8	10,16	1	4,9	2,7	2,4			0,68	1,5	0,39	1,1				
20	6,5	20	17,8	10,16	1	4,9					0,82	1,7	0,47	1,3				
20	8	20	17,8	10,16	1	6	3,9	2,6	1,5	2,5	1	2,3	0,56	1,6	0,33	1,1	0,15	0,8
20	8	20	17,8	10,16	1	6			1,8	3	1,2	2,6	0,68	2	0,39	1,4	0,22	1,2
20	12,5	20	17,8	10,16	1	9,5	4,7	3,1	2,2	3,7	1,5	3,3	0,82	2,5	0,47	1,6	0,27	1,5
20	12,5	20	17,8	10,16	1	9,5	5,6	3,7	2,7	4,5	1,8	4,2	1	3	0,56	1,9	0,33	2
20	12,5	20	17,8	10,16	1	9,5	6,8	4,4	3,3	5			1,2	3,2	0,68	2,3	0,39	2,3
20	12,5	20	17,8	10,16	1	9,5									0,82	2,8		
20	20	20	17,8	10,16	1	13,6	8,2	5,4	3,9	5	2,2	5	1,5	3,9	1	3,4	0,47	2,7
20	20	20	17,8	10,16	1	13,6	10	6,5	4,7	5,9	2,7	6,1	1,8	5	1,2	4,1	0,56	3,4
20	20	20	17,8	10,16	1	13,6	12	7,9	5,6	7,1	3,3	6,3	2,2	5,8			0,68	4,2
20	30	20	17,8	10,16	1	20,4	15	9,5	6,8	7,9	3,9	7,9	2,7	7,2	1,5	5	0,82	5
20	30	20	17,8	10,16	1	20,4	18	10,1	8,2	8,9	4,7	8,4	3,3	7,8	1,8	6,2	1	5,8
20	30	20	17,8	10,16	1	20,4	22	10,4	10	9,4	5,6	8,7						
31	12,5	32	27,94	15,24	1	21,2	15 B	5,4	6,8 B	6,3	3,9 B	4,3	2,2 B	4	1,5 B	2,6	0,82 B	2,3
31	12,5	32	27,94	15,24	1	21,2	18 B	6,7	8,2 B	6,9	4,7 B	5,1	2,7 B	4,5	1,8 B	3,3	1 B	2,9
31	12,5	32	27,94	15,24	1	21,2	22 B	8,1	10 B	7,4	5,6 B	6,2	3,3 B	6				
31	22	32	27,94	15,24	1	37,3	27	10,8	12	9,1	6,8	8,3	4,7	7,9	2,2	4,3	1,2	3,7
31	22	32	27,94	15,24	1	37,3	33	11,4	15	9,8	8,2	8,9	5,6	8,4	2,7	5,2	1,5	4,8
31	22	32	27,94	15,24	1	37,3	39	11,8	18	10,4	10	9,5	6,8	9	3,3	6,4	1,8	5,8
31	22	32	27,94	15,24	1	37,3					12	9,8			3,9	7,8	2,2	6,9
31	32	32	27,94	15,24	1	54,2	47	14	22	12,3	15	11,8	8,2	10,7	4,7	9,2	2,7	8,4
31	32	32	27,94	15,24	1	54,2	56	14,5	27	13	18	12,6	10	11,4	5,6	10,2	3,3	9,3
31	32	32	27,94	15,24	1	54,2	68	15					12	11,7	6,8	10,9	4,7	10,2
± 0,5	max	± 0,5	± 0,5	± 0,5	+10% - 0,05	max						± 20%	- ± 10%					
							-			_								

Tolerances on dimensions Tolérances dimensionnelles

Capacitance tolerances / Tolérances sur capacité

For intermediate value, the dimensions are those of the immediately superior value

Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure

Low model PHM 912 B

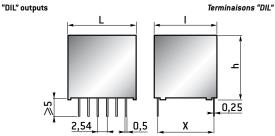
Modèle bas PHM 912 B

HOW TO ORDER					EXEMPLE DE C	ODIFICATION À LA COMMANDE
Model	B: Low profile case	W:RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})	CECC+: Other reliability level
PHM 912	-	-	1,2 µF	± 10%	800 V	_
Modèle	B : Boîtier bas	W : RoHS	Capacité	Tol. sur capa.	Tension nom. (V_{CC})	CECC+ : Niveau de fiabilité

54 www.exxelia.com - info@exxelia.com Tel:+33 (0)1 49 23 10 00 Page revised - Version 04/16

PHM 912 N

DIELECTRIC Metallized plastic film


TECHNOLOGY Self-healing, low inductance Thermoplastic case epoxy

resin sealed Tinned copper radial leads

RoHS compliance (W) Flame retardant (ÙL)

MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

Film plastique métallisé

TECHNOLOGIE

Autocicatrisable, faible inductance Boîtier thermoplastique obturé résine époxy Sorties radiales par fils de cuivre étamé

OPTIONS Conformité RoHS (W) Auto-extinguible (UL)

MARQUAGE

modèle capacité tolérance tension nominale date-code

GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Climatic category		55/155/21		Catégorie climatique
D. F. Tg δ at 1 kHz		≤ 60.10 ⁻⁴		Tg δ à 1 kHz
Insulation resistance	for C _R ≤ 0,33 μF	≥ 7500 MΩ	pour C _R ≤ 0,33 µF	Résistance d'isolement
	for C _R > 0,33 μF	≥ 2500 MΩ µ F	pour C _R > 0,33 μF	
Test voltage (60 s)		1,6 U _{RC}		Tension de tenue (60 s)
Insulation between leads and case		50000 MΩ		Isolement entre bornes réunies et masse
Permissible current at 300 kHz up to 105°C		I _{RA}		Intensité eff. admissible à 300 kHz jusqu'à 105°C
at 155°C		0,1 I _{RA}		à 155℃
Measurement and test conditions		EN 130 000 / EN 60384-2		Conditions de mesures et d'essais

CAPACITA	NCE VALUE	S AND RAT	ED VOLTAG	E (D.C.)									V	ALEURS DE	CAPACITÉ	ET DE TENS	ION (U _{rc})
Dimensio	ons (mm)				Weight Masse	25	0 V	40	0 V	50	0 V	63	0 V	80	0 V	100)O V
L	h	е	Х	Nb connections	g	C _R (µF)	I _{RA} (A)										
20	6,5	20	17,8	7 x 2	4,9	1,8	1,5	1	1,6	0,47	1,1	0,27	0,8	0,27	0,9		
20	6,5	20	17,8	7 x 2	4,9	2,2	2,2	1,2	2	0,56	1,3	0,33	0,9				
20	6,5	20	17,8	7 x 2	4,9	2,7	2,4			0,68	1,5	0,39	1,1				
20	6,5	20	17,8	7 x 2	4,9					0,82	1,7	0,47	1,3				
20	8	20	17,8	7 x 2	6	3,9	2,6	1,5	2,5	1	2,3	0,56	1,6	0,33	1,1	0,15	0,8
20	8	20	17,8	7x2	6			1,8	3	1,2	2,6	0,68	2	0,39	1,4	0,22	1,2
20	12,5	20	17,8	7x2	9,5	4,7	3,1	2,2	3,7	1,5	3,3	0,82	2,5	0,47	1,6	0,27	1,5
20	12,5	20	17,8	7x2	9,5	5,6	3,7	2,7	4,5	1,8	4,2	1	3	0,56	1,9	0,33	2
20	12,5	20	17,8	7x2	9,5	6,8	4,4	3,3	5			1,2	3,2	0,68	2,3	0,39	2,3
20	12,5	20	17,8	7x2	9,5									0,82	2,8		
20	20	20	17,8	7x2	13,6	8,2	5,4	3,9	5	2,2	5	1,5	3,9	1	3,4	0,47	2,7
20	20	20	17,8	7x2	13,6	10	6,5	4,7	5,9	2,7	6,1	1,8	5	1,2	4,1	0,56	3,4
20	20	20	17,8	7x2	13,6	12	7,9	5,6	7,1	3,3	6,3	2,2	5,8			0,68	4,2
20	30	20	17,8	7x2	20,4	15	9,5	6,8	7,9	3,9	7,9	2,7	7,2	1,5	5	0,82	5
20	30	20	17,8	7x2	20,4	18	10,1	8,2	8,9	4,7	8,4	3,3	7,8	1,8	6,2	1	5,8
20	30	20	17,8	7x2	20,4	22	10,4	10	9,4	5,6	8,7						
31	12,5	32	27,94	11 x 2	21,2	15 B	5,4	6,8 B	6,3	3,9 B	4,3	2,2 B	4	1,5 B	2,6	0,82 B	2,3
31	12,5	32	27,94	11 x 2	21,2	18 B	6,7	8,2 B	6,9	4,7 B	5,1	2,7 B	4,5	1,8 B	3,3	1 B	2,9
31	12,5	32	27,94	11 x 2	21,2	22 B	8,1	10 B	7,4	5,6 B	6,2	3,3 B	6				
31	22	32	27,94	11 x 2	37,3	27	10,8	12	9,1	6,8	8,3	4,7	7,9	2,2	4,3	1,2	3,7
31	22	32	27,94	11 x 2	37,3	33	11,4	15	9,8	8,2	8,9	5,6	8,4	2,7	5,2	1,5	4,8
31	22	32	27,94	11 x 2	37,3	39	11,8	18	10,4	10	9,5	6,8	9	3,3	6,4	1,8	5,8
31	22	32	27,94	11 x 2	37,3					12	9,8			3,9	7,8	2,2	6,9
31	32	32	27,94	11 x 2	54,2	47	14	22	12,3	15	11,8	8,2	10,7	4,7	9,2	2,7	8,4
31	32	32	27,94	11 x 2	54,2	56	14,5	27	13	18	12,6	10	11,4	5,6	10,2	3,3	9,3
31	32	32	27,94	11 x 2	54,2	68	15					12	11,7	6,8	10,9	4,7	10,2
± 0,5	max	± 0,5	± 0,5	± 0,5 +10%	max						± 20%	- ± 10%					

Tolerances on dimensions Tolérances dimensionnelles

Capacitance tolerances / Tolérances sur capacité

For intermediate value, the dimensions are those of the immediately superior value Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure Modèle bas PHM 912 NB Low model PHM 912 NB

HOW TO ORDER						EXEMPLE DE C	ODIFICATION À LA COMMANDE
Model	N: Outputs	B: Low profile case	W: RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})	CECC+: Other reliability level
PHM 912	_	-	-	1,2 µF	± 10%	800 V	_
Modèle	N : Sorties	B : Boîtier bas	W : RoHS	Capacité	Tol. sur capa.	Tension nom. (V _{CC})	CECC+ : Niveau de fiabilité

PHM 912 R1 - PHM 912 R2

RoHS = W

DIELECTRIC

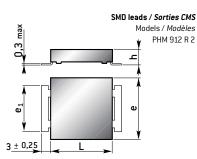
Metallized plastic film

TECHNOLOGY Self-healing, low inductance Thermoplastic case epoxy resin sealed Surface mount device

OPTIONS

RoHS compliance (W) Flame retardant (UL)

SMD leads / Sorties CMS Models / Modèles PHM 912 R 1 3 ±0,25


MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

Film plastique métallisé **TECHNOLOGIE**

Autocicatrisable, faible inductance Boîtier thermoplastique

obturé résine époxy Sorties pour report à plat

OPTIONS Conformité RoHS (W) Auto-extinguible (UL)

MARQUAGE modèle

capacité tolérance tension nominale date-code

GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Climatic category		55 / 155 / 21		Catégorie climatique
D. F. Tg δ at 1 kHz		≤ 60.10 ⁻⁴		Tg δ à 1 kHz
Insulation resistance	for C _R ≤ 0,33 μF	≥ 7500 MΩ	pour C _R ≤ 0,33 μF	Résistance d'isolement
	for C _R > 0,33 μF	≥ 2500 MΩ μ F	pour C _R > 0,33 μF	
Test voltage (60 s)		1,6 U _{RC}		Tension de tenue (60 s)
Insulation between leads and case		50000 MΩ		Isolement entre bornes réunies et masse
Permissible current at 300 kHz up to 105°C		I _{RA}		Intensité eff. admissible à 300 kHz jusqu'à 105°C
at 155℃		0,1 I _{RA}		à 155℃
Measurement and test conditions		EN 60384-19 / EN 130 000		Conditions de mesures et d'essais

Dimensi	ons (mm)					Weight <i>Masse</i>	25	0 V		0 V		0 V	63	0 V	80	0 V	100	00 V
	h			Х	a		C _R (µF)	I _{RA} (A)	C _R (µF)	I _{RA} (A)	C _R (µF)	I _{RA} (A)	C _R (μF)	I _{RA} (A)	C _R (μF)	I _{RA} (A)	C _R (μF)	I _{RA} (A)
20	6,5	20	15	17,8	2,5	4,9	1,8	1,5	1	1,6	0,47	1,1	0,27	0,8	0,27	0,9		
20	6,5	20	15	17,8	2,5	4,9	2,2	2,2	1,2	2	0,56	1,3	0,33	0,9				
20	6,5	20	15	17,8	2,5	4,9	2,7	2,4			0,68	1,5	0,39	1,1				
20	6,5	20	15	17,8	2,5	4,9					0,82	1,7	0,47	1,3				
20	8	20	15	17,8	2,5	6	3,9	2,6	1,5	2,5	1	2,3	0,56	1,6	0,33	1,1	0,15	0,8
20	8	20	15	17,8	2,5	6			1,8	3	1,2	2,6	0,68	2	0,39	1,4	0,22	1,2
20	12,5	20	15	17,8	2,5	9,5	4,7	3,1	2,2	3,7	1,5	3,3	0,82	2,5	0,47	1,6	0,27	1,5
20	12,5	20	15	17,8	2,5	9,5	5,6	3,7	2,7	4,5	1,8	4,2	1	3	0,56	1,9	0,33	2
20	12,5	20	15	17,8	2,5	9,5	6,8	4,4	3,3	5			1,2	3,2	0,68	2,3	0,39	2,3
20	12,5	20	15	17,8	2,5	9,5									0,82	2,8		
20	20	20	15	17,8	2,5	13,6	8,2	5,4	3,9	5	2,2	5	1,5	3,9	1	3,4	0,47	2,7
20	20	20	15	17,8	2,5	13,6	10	6,5	4,7	5,9	2,7	6,1	1,8	5	1,2	4,1	0,56	3,4
20	20	20	15	17,8	2,5	13,6	12	7,9	5,6	7,1	3,3	6,3	2,2	5,8			0,68	4,2
20	30	20	15	17,8	2,5	20,4	15	9,5	6,8	7,9	3,9	7,9	2,7	7,2	1,5	5	0,82	5
20	30	20	15	17,8	2,5	20,4	18	10,1	8,2	8,9	4,7	8,4	3,3	7,8	1,8	6,2	1	5,8
20	30	20	15	17,8	2,5	20,4	22	10,4	10	9,4	5,6	8,7						
31	12,5	32	24	27,94	4	21,2	15 B	5,4	6,8 B	6,3	3,9 B	4,3	2,2 B	4	1,5 B	2,6	0,82 B	2,3
31	12,5	32	24	27,94	4	21,2	18 B	6,7	8,2 B	6,9	4,7 B	5,1	2,7 B	4,5	1,8 B	3,3	1 B	2,9
31	12,5	32	24	27,94	4	21,2	22 B	8,1	10 B	7,4	5,6 B	6,2	3,3 B	6				
31	22	32	24	27,94	4	37,3	27	10,8	12	9,1	6,8	8,3	4,7	7,9	2,2	4,3	1,2	3,7
31	22	32	24	27,94	4	37,3	33	11,4	15	9,8	8,2	8,9	5,6	8,4	2,7	5,2	1,5	4,8
31	22	32	24	27,94	4	37,3	39	11,8	18	10,4	10	9,5	6,8	9	3,3	6,4	1,8	5,8
31	22	32	24	27,94	4	37,3					12	9,8			3,9	7,8	2,2	6,9
31	32	32	24	27,94	4	54,2	47	14	22	12,3	15	11,8	8,2	10,7	4,7	9,2	2,7	8,4
31	32	32	24	27,94	4	54,2	56	14,5	27	13	18	12,6	10	11,4	5,6	10,2	3,3	9,3
31	32	32	24	27,94	4	54,2	68	15					12	11,7	6,8	10,9	4,7	10,2
± 0.5	max	± 0.5	± 0.5	± 0.5	+10%	max							± 10%					

Tolerances on dimensions Tolérances dimensionnelles

 \pm 20% - \pm 10% Capacitance tolerances / Tolérances sur capacité

Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure For intermediate value, the dimensions are those of the immediately superior value

HOW TO ORDER						EXEMPLE DE C	ODIFICATION À LA COMMANDE
Model	R1/R2: Outputs	B: Low profile case	W: RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})	CECC+ : Other reliability level
PHM 912	_	_	-	1,2 µF	± 10%	800 V	_
Modèle	R1/R2: Sorties	B : Boîtier bas	W : RoHS	Capacité	Tol. sur capa.	Tension nom. (V _{CC})	CECC+ : Niveau de fiabilité

Low model PHM 912 NB

56 www.exxelia.com - info@exxelia.com Tel:+33 (0)1 49 23 10 00 Page revised - Version 04/16

SUMMARY SOMMAIRE

METALLIZED POLYPROPYLENE	CAPACITORS			CONDENSATEURS POLYPROP	YLÈNE MÉTALLISÉ
Commercial tune	Standard reference	Capacitance	Rated voltage / 1	Tension nominale	
Commercial type Appellation commerciale	Modèle normalisé	Capacité	U _{RC}	U _{RA}	Page
PP 78 A	PPM 2	1000 pF - 5,62 μF	160 V - 630 V	100 V - 250 V	63
PP 78 R	PPM 3 - PPM 6	1000 pF - 10,2 μF	160 V - 630 V	100 V - 250 V	64
PP 78 S	PPM 4 - PPM 8	1000 pF - 10 μF	160 V - 630 V	100 V - 250 V	65
PP 72 R		1000 pF - 6,8 μF	160 V - 630 V	100 V - 330 V	66
PP 72 A		1000 pF - 6,8 μF	160 V - 630 V	100 V - 330 V	66
PP 72 S		1000 pF - 6,8 μF	160 V - 630 V	100 V - 330 V	67
PP 73		10 nF - 1 μF		160 V - 250 V	68
PP 74		0,15 μF - 2,2 μF		160 V - 250 V	68
PP 75		0,1 μF - 4,7 μF		160 V - 250 V	68
PP 20	PPM 9	1000 pF - 0,432 μF	160 V - 250 V		69
IGB 99		47 nF - 2,5 μF	800 V - 3000 V	450 V - 750 V	70
PM 98		25 μF - 1600 μF	300 V - 600 V	40 V - 100 V	71
PM 980		25 μF - 1600 μF	300 V - 600 V	40 V - 100 V	71
PPA-1		1,5 μF - 260 μF	300 V - 600 V	40 V - 100 V	72
PPA-2		1,5 μF - 260 μF	300 V - 600 V	40 V - 100 V	72
PPA-M1		1,5 μF - 260 μF	300 V - 600 V	40 V - 100 V	72
PPA-M2		1,5 μF - 260 μF	300 V - 600 V	40 V - 100 V	72
PPA-FR1		1,5 μF - 30 μF		500/550 V	73
PPA-FR2		1,5 μF - 30 μF		500/550 V	73
PP 44 R		0,1 μF - 300 μF	300 V - 2000 V	190 V - 1200 V	74-75
PP 44 R5		0,33 μF - 300 μF	480 V - 1600 V	250 V - 800 V	76
PP 44 A2		12 μF - 300 μF	600 V - 2400 V	120 V - 500 V	77
PP 88		0,12 μF - 7,5 μF	800 V - 4000 V	500 V - 2000 V	78-79
POLYPROPYLENE FILM-FOIL CA	PACITORS		CONDE	NSATEURS POLYPROPYLÈNE À ARMATUR	RES MÉTALLIQUES
PPS 13		100 pF - 180 nF	63 V - 250 V		80
PP 318	PP 3	100 pF - 59 nF	63 V		80
PP 418	PP 4	100 pF - 68,1 nF	63 V		80
PPS 16 R		100 pF - 603 nF	63 V - 1000 V		81
PPS 16 A		100 pF - 603 nF	63 V - 1000 V		81
METALLIZED POLYPROPYLENE	FILM-FOIL CAPACITORS		CONL	DENSATEURS POLYPROPYLÈNE MÉTALL	ISÉ À ARMATURES
RA 75		1000 pF - 2,2 μF	630 V - 1500 V	300 V - 500 V	82
RA •1		3300 pF - 1 μ F	630 V	330 V	83
RA •2		1000 pF - 0,47 μF	1000 V	425 V	83
RA •3		680 pF - 0,22 μF	1600 V	500 V	84
RA •4		100 pF - 0,15 μF	2000 V	500 V	84
PS •1		2700 pF - 0,39 <i>µ</i> F	630 V	300 V	85
PS •2		1000 pF - 0,15 μF	1000 V	400 V	85
PS •3		1000 pF - 82 nF	1600 V	500 V	86
PS •4		1000 pF - 47 nF	2000 V	600 V	86
IMPULSE POLYPROPYLENE CAP	ACITORS			CONDENSATEURS POLYPROPYLÈ	NE D'IMPULSIO <u>ns</u>
PP 3M		1 nF - 0,22 <i>µ</i> F	2000 V - 3500 V	750 V - 1400 V	87
PR 3M		1 nF - 0,22 μF	2000 V - 3500 V	750 V - 1400 V	87
PP 3A 0		680 pF - 22 nF	630 V - 2000 V	330 V - 550 V	88
PP 3A 1		1000 pF - 100 nF	630 V - 3500 V	330 V - 800 V	88
PR 3A 0		680 pF - 22 nF	630 V - 2000 V	330 V - 550 V	88
PR 3A 1		1000 pF - 100 nF	630 V - 3500 V	330 V - 800 V	88
PP 3A 2		1000 pF - 680 nF	630 V - 3500 V	330 V - 800 V	89
PP 3A 3		10 nF - 1 μF	630 V - 3500 V	330 V - 800 V	89
PR 3A 2		1000 pF - 680 nF	630 V - 3500 V	330 V - 800 V	89
PR 3A 3		10 nF - 1 μF	630 V - 3500 V	330 V - 800 V	89
HIGH VOLTAGE METALLIZED PO	LYPROPYLENE CAPACITORS			NSATEURS POLYPROPYLÈNE MÉTALLIS	É HAUT <u>E TENSION</u>
PRA HT		1 nF - 10 μF	1000 V - 20000 V	250 V - 4000 V	90
		•			

Tel:+33 (0)1 49 23 10 00

GENERAL INFORMATION *GÉNÉRALITÉS*

POLYPROPYLENE CAPACITORS

Polypropylene has excellent mechanical, chemical and electrical properties due to its regulars non-polar structure.

This film is characterised by very low dielectric losses, small dielectric absorption, high dielectric strength, very high insulating resistance and a practically linear temperature coefficient in all temperature ranges.

All these properties make this film highly attractive for manufacturing precision capacitors or for power electronics capacitors.

CHARACTERISTICS OF METALLIZED POLYPROPYLENE CAPACITORS

According to standard NF C 93156.

Rated temperature (at D.C. or A.C. voltage)

The rated temperature at D.C. or A.C. voltage is equal to 85° C for capacitors with a maximum category temperature greater than or equal to 85° C.

Rated voltage U_R

Effective D.C. or A.C. voltage that can be applied continuously to the terminals of a capacitor at any temperature value between the minimum category temperature and the rated temperature.

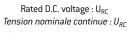
CONDENSATEURS POLYPROPYLÈNE

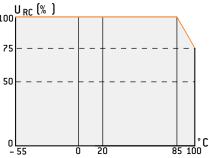
Le polypropylène possède d'excellentes propriétés mécaniques, chimiques et électriques du fait de sa structure régulière et non polaire.

Ce film est caractérisé par des pertes diélectriques très faibles, une faible absorption diélectrique, une rigidité diélectrique élevée, une très forte résistance d'isolement et un coefficient de température pratiquement linéaire dans toute la gamme de températures.

Toutes ces propriétés rendent ce film attractif pour la fabrication de condensateurs de précision ou de condensateurs destinés à l'électronique de puissance.

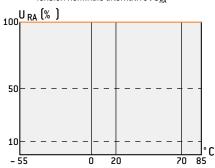
CARACTERISTIQUES DES CONDENSATEURS POLYPROPYLÈNE MÉTALLISÉ

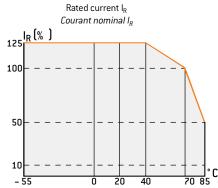

Se référer à la norme NF C 93156.


Température nominale (sous tension continue ou alternative)

La température nominale sous tension continue ou alternative est égale à 85°C pour les condensateurs de température maximale de catégorie supérieure ou égale à 85°C.

Tension nominale U_R


Tension continue ou alternative effective pouvant être appliquée de façon permanente aux bornes d'un condensateur à toute température comprise entre la température minimale de la catégorie et la température nominale.



Admissible D.C. voltage versus température Tension continue admissible en fonction de la température

Rated A.C. voltage: U_{RA} Tension nominale alternative: U_{RA}

Admissible A.C. voltage versus température Tension efficace admissible en fonction de la température

Admissible current versus temperature
Courant admissible en fonction de la température

A.C. rated current I_R

The A.C. rated current or permissible current is the permissible A.C. value that can be applied permanently to the capacitor at 70° C (at specified frequency).

Category voltage U_C

Voltage applicable to a capacitor's terminals beyond the rated temperature : e.g. : $U_C = 0.75~U_R$ at $100\,^{\circ}C$.

Rated capacitance C_R

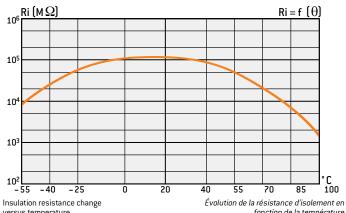
A capacitor's capacitance value measured in normal atmospheric conditions.

Courant alternatif nominal I_R

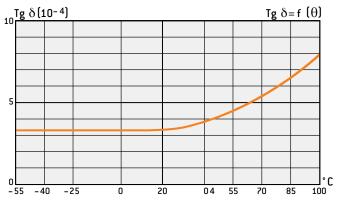
Le courant alternatif nominal ou intensité traversante, est la valeur efficace admissible applicable en permanence aux bornes du condensateur à la température de 70°C (la fréquence étant spécifiée).

Tension de catégorie U_C

Tension applicable aux bornes d'un condensateur au-delà de la température nominale : ex. : $U_C = 0.75 U_R$ à $100^{\circ}C$.

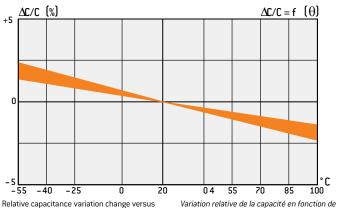

Capacité nominale C_R

Valeur de la capacité d'un condensateur mesurée dans les conditions atmosphériques normales.



GENERAL INFORMATION GÉNÉRALITÉS

METALLIZED POLYPROPYLENE CAPACITORS PERFORMANCE

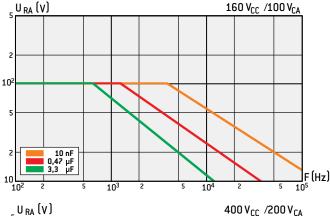

fonction de la température

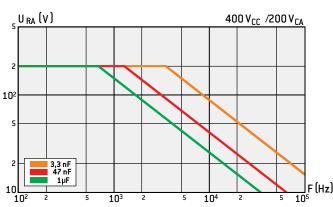
Dissipation factor change versus temperature

Évolution de la tangente de l'angle de pertes en fonction de la température

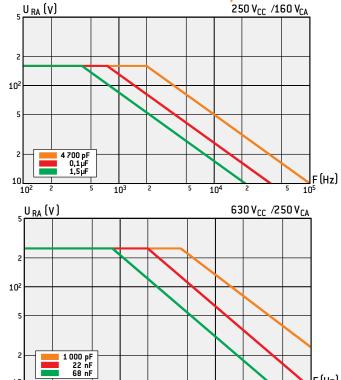
COMPORTEMENT DES CONDENSATEURS POLYPROPYLÈNE

temperature


Variation relative de la capacité en fonction de la température



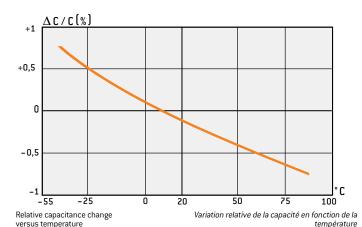
Dissipation factor change versus frequency


Évolution de la tangente de l'angle de pertes en fonction de la fréquence

Permissible voltage versus frequency

Tension admissible en fonction de la fréquence

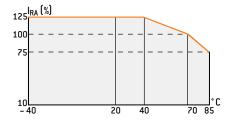
10³

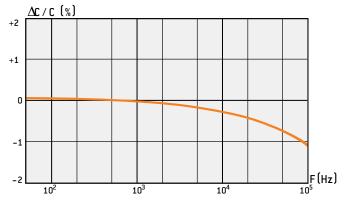

F (Hz)

GENERAL INFORMATION GÉNÉRALITÉS

CHARACTERISTICS OF METALLIZED POPYPROPYLENE + FOIL CAPACITORS

This technology, which enables us to combine the properties of metallized film (self-healing) and those of film-foil (high current), allows us to manufacture high-voltage capacitors which accept considerable A.C. currents.

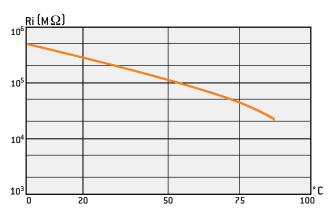

For this type of current, the permissible current values IRA are specified in the data sheets for a frequency of 30 kHz.



Admissible A.C.

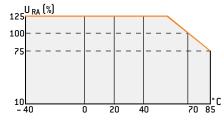
current versus temperature

Courant efficace admissible en fonction de la température

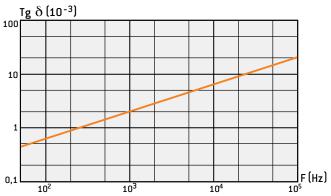

Relative capacitance variation versus frequency

Variation relative de la capacité en fonction de la fréquence

CARACTERISTIQUES DES CONDENSATEURS POLYPROPYLÈNE MÉTALLISÉ À ARMATURES


La technologie de fabrication permet de combiner les propriétés des films métallisés (autocicatrisation) et des films à armatures (forts courants) conduisant à la réalisation de condensateurs haute tension admettant des courants efficaces importants.

Pour ceux-ci, les valeurs de courants admissibles IRA sont spécifiées dans les feuilles particulières à une fréquence de 30 kHz.


Insulation resistance variation versus temperature

Variation de la résistance d'isolement en fonction de la température

Admissible A.C.

Tension efficace admissible en fonction de la température

Dissipation factor change versus frequency

Variation de l'angle de pertes en fonction de la fréquence

CHARACTERISTICS OF POLYPROPYLENE FILM-FOIL CAPACITORS

According to standard UTE C 93157.

Rated temperature

 \bullet Rated temperature at D.C. voltage :

The rated temperature at D.C. voltage is equal ≥ 85°C for capacitors having a maximum category temperature greater than or equal to 85°C.

• Rated temperature at A.C. voltage :

The rated temperature at A.C. voltage is 70°C for capacitors having a maximum category temperature greater than or equal to 85°C.

CARACTERISTIQUES DES CONDENSATEURS POLYPROPYLENE À ARMATURES

Se référer à la norme UTE C 93157.

Température nominale

• Température nominale sous tension continue :

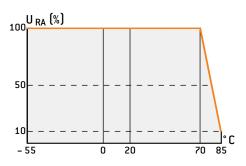
La température nominale sous tension continue est égale à 85°C pour les condensateurs de température maximale de catégorie supérieure ou égale à 85°C.

• Température nominale sous tension alternative : La température nominale sous tension alternative est égale à 70°C pour les condensateurs de température maximale de catégorie supérieure ou égale à 85°C.

GENERAL INFORMATION GÉNÉRALITÉS

Rated voltage U_R

D.C. or A.C. effective voltage that can be applied continuously to a capacitor's terminals at any temperature between the minimum category temperature and the rated temperature.

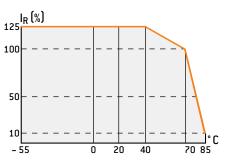

Rated D.C. voltage: U_{RC} or U_R
 Rated A.C. voltage: U_{RA} or U_R

Rated current I_R

The rated A.C. current is the maximum permissible A.C. value of sinewave A.C. current, at a specified frequency at which the capacitor can operate permanently at rated temperature under A.C. voltage.

Admissible A.C. voltage versus temperature.

Tension efficace admissible en fonction de la température.


Tension nominale U_R

Tension continue ou alternative effective pouvant être appliquée de façon permanente aux bornes du condensateur à toute température comprise entre la température minimale de catégorie et la température nominale.

• Tension nominale continue : U_{RC} ou U_R • Tension nominale alternative : U_{RA} ou U_R

Courant nominal IR

Le courant nominal alternatif est la valeur efficace maximale admissible en courant alternatif sinusoïdal, de fréquence spécifiée, sous lequel le condensateur peut fonctionner de façon permanente à la température nominale sous tension alternative.

Admissible current ersus temperature.

ourant admissible en fonction de la température.

Category voltage U_C

Voltage applicable to a capacitor's terminals beyond the maximum category temperature :

ex. : $U_C = 0,1 \ U_R$ at 85°C.

Rated capacitance C_R

Capacitance value of a capacitor measured in normal climatic conditions.

RECOMMENDATION FOR MOUNTING

Handling

Capacitors should not be handled by terminals or by connections. After use under D.C. voltage, it is advisable to short-circuit the connections as certain dielectrics keep a residual charge which might be dangerous during handling operations.

Mounting

Cables, bars or connecting braids shall be properly dimensioned to prevent any abnormal temperature rise of the terminals.

They shall be solid enough to help remove the calories

For axial lead capacitors, one of the two leads shall be flexible to prevent mechanical stresses.

It is also preferable to connect battery-mounted capacitors by means of flexible cables or by braids

A free gap shall be allowed between battery-mounted capacitors.

Tension de catégorie U_C

Tension applicable aux bornes d'un condensateur au-delà de la température maximale de catégorie :

ex. : $U_C = 0,1 \ U_R \ a \ 85^{\circ}C$.

Capacité nominale C_R

Valeur de la capacité d'un condensateur mesurée dans les conditions atmosphériques normales.

RECOMMANDATION DE MONTAGE

Manipulation

Les condensateurs ne doivent pas être manipulés par les bornes ou les connexions. Après utilisation en tension continue, il est prudent de court-circuiter celles-ci, certains diélectriques gardant une rémanence de charge qui peut être dangereuse lors des manipulations.

Montage

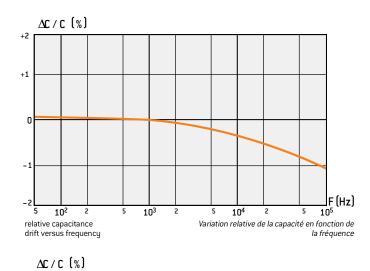
Les câbles, barres ou tresses de raccordement doivent être correctement dimensionnés pour éviter un échauffement anormal des bornes.

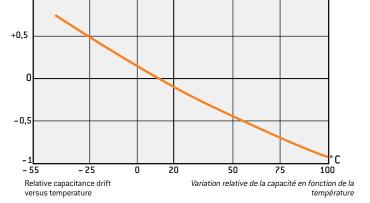
Ils doivent être suffisamment massifs pour aider à extraire les calories Pour les condensateurs à sorties axiales, un des deux raccordements doit être souple afin de ne pas apporter de contraintes mécaniques.

De même, le raccordement des condensateurs en batterie se fait de préférence par des câbles souples ou par des tresses.

Il convient de laisser un espace libre entre les condensateurs montés en batterie.

RECOMMENDED TORQUE VALUES **COUPLES DE SERRAGE RECOMMANDÉS** Aluminium tube mounting with threaded stud Threaded outputs Threaded insert outputs Fixation tube aluminium à téton fileté Sorties par tiges filetées Sorties par inserts filetés **M 8**: 7,5 N.m M 8 · 4 N m M3 · 043 Nm **M 6** · 6 N m **M 4**: 0,96 N.m **M 5**: 2 N.m M 12 · 10 N m M 10 : 14,1 N.m M8 · 10 N m **M 12** : 25,4 N.m **M 6** : 3,1 Nm

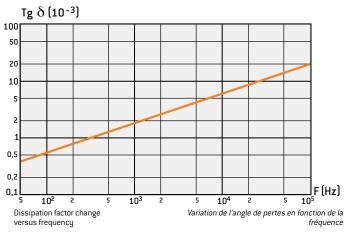


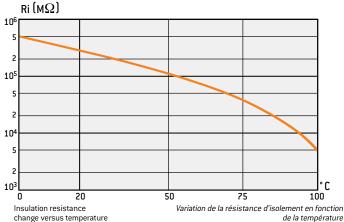

GENERAL INFORMATION GÉNÉRALITÉS

INSULATING RESISTANCE RI

For capacitors showing a value of $C_R \le 0,33\,\mu\text{F}$, insulating resistance is irrespective of the capacitor's value and it is expressed in M Ω . For capacitors showing a value of $C_R > 0,33\,\mu\text{F}$, insulating resistance is defined by the product Ri x C_R and it is expressed in second(s) or in M $\Omega.\mu\text{F}$.

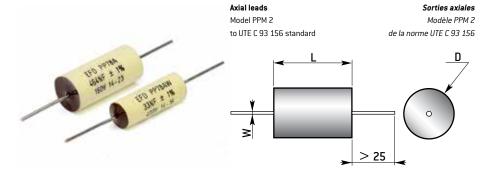
POLYPROPYLENE FILM-FOIL CAPACITORS PERFORMANCE




COMPORTEMENT TYPIQUE EN FONCTION DE LA TEMPÉRATURE (À 1 KHZ)

Pour les condensateurs de valeur $C_R \le 0.33\,\mu$ F, la résistance d'isolement est indépendante de la valeur du condensateur et s'exprime en M Ω .

Pour les condensateurs de valeur $C_R > 0,33\,\mu\text{F}$, la résistance d'isolement est définie par le produit Ri x C_R et s'exprime en seconde $\{s\}$ ou en $M\Omega\mu\text{F}$.


COMPORTEMENT DES CONDENSATEURS POLYPROPYLÈNE À ARMATURES

PP 78 A

RoHS = W

L (mm)	D (mm)	160 V _{CC}	250 V _{CC} I _{RA} *	400 V _{CC}	630 V _{CC} I _{RA} *
12	5	0,12/0,16	0,1	0,1/0,12	0,08/0,1
14,5	5	0,16	0,1/0,12	0,12/0,16	0,1
14,5	6,2	0,2/0,32	0,12/0,32	0,16/0,2	0,12/0,16
14,5	7,5	0,32/0,4	0,32/0,5	0,2/0,32	0,16/0,25
19	7,5	0,4/0,5	0,32/0,5	0,32/0,4	0,2/0,32
19	8,7	0,5/0,8	0,5/0,63	0,4/0,5	0,32/0,4
19	10	0,8/1	0,63/0,8	0,5/0,63	0,4/0,8
27,5	8,7	0,5/0,8	0,5	0,32/0,4	0,32/0,4
27,5	10	0,8/1	0,5/0,8	0,4/0,8	0,4/0,63
27,5	11,2	1/1,25	0,8/1,25	0,8/1	0,63/1
27,5	12,5	1,25/1,6	1,25/1,6	1/1,5	1/1,25
32,5	12,5	1,6/2	1,6/2	1,25/1,6	1/1,6
32,5	15	2/3,15	2/2,5	1,6/2,5	1,6/2
32,5	17,5	3,15/4	2,5/3,15	2,5/3,15	2/3,15
32,5	20	4/6,3	3,15/4	3,15/4	3,15/4
*	5146				

* I_{RA} : Permissible RMS current in amperes

DIELECTRIC

Metallized polypropylene

TECHNOLOGY

Self-healing, non-inductive Polyester wrapped Epoxy resin sealed

OPTION

Flame retardant (UL)

MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

Polypropylène métallisé

TECHNOLOGIE

Autocicatrisable, non inductif

Enrobé polyester Obturé résine époxy

OPTION:

Auto-extinguible (UL)

MARQUAGE

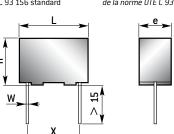
modèle capacité tolérance tension nominale date-code

ELECTRICAL CHARACTERISTICS				CARACTÉRISTIQUES ÉLECTRIQUES
Climatic category		55/085/56		Catégorie climatique
Performance class		1		Classe de performance
Stability class		1		Classe de stabilité
Tg δ at 1 kHz		≤ 10.10-4		Tg δ à 1 kHz
Insulation resistance	for C _R ≤ 0,33 μF	≥ 100000 MΩ	pour $C_R \le 0.33 \mu\text{F}$	Résistance d'isolement
	for $C_R > 0.33 \mu\text{F}$	≥ 30000 MΩ. µ F	$pour C_R > 0.33 \mu F$	
Test voltage		1,6 U _{RC}		Tension d'essai
Specified frequency for I _{RA}		30 kHz		Fréquence spécifiée pour I _{RA}

CAPACITANCE VA	LUES AND RATED V	ULIAGE (D.C.)							RS DE CAPACITÉ ET L	
Dimensions (mi	n)		U _{RC} 160 V U _{RA} 100 V		U _{RC} 250 V U _{RA} 160 V		U _{RC} 4 U _{RA} 2	100 V 200 V	U _{RC} 6 U _{RA} 2	
			C _R min	C _R max	C _R min	C _R max	C _R min	C _R max	C _R min	C _R max
12	5	0,6	8450 pF	21500 pF	4300 pF	8250 pF	2400 pF	4220 pF	1000 pF	2370 pF
14,5	5	0,6	22000 pF	42200 pF	8450 pF	17800 pF	4300 pF	9100 pF	2400 pF	5110 pF
14,5	6,25	0,6	43000 pF	75000 pF	18000 pF	31600 pF	9310 pF	17800 pF	5230 pF	10000 pF
14,5	7,5	0,6	76800 pF	0,133 μF	32400 pF	62000 pF	18000 pF	31600 pF	10200 pF	19600 pF
19	7,5	0,8	0,137 <i>μ</i> F	0,215 μF	63400 pF	91000 pF	32400 pF	51100 pF	20000 pF	31600 pF
19	8,75	0,8	0,22 <i>μ</i> F	0,316 <i>μ</i> F	93100 pF	0,147 μF	52300 pF	75000 pF	32400 pF	47000 pF
19	10	0,8	0,324 <i>μ</i> F	0,464 μF	0,15 <i>μ</i> F	0,215 μF	76800 pF	0,11 μF	47500 pF	75000 pF
27,5	8,75	0,8	0,475 <i>μ</i> F	0,634 μF	0,22 μF	0,274 μF	0,113 <i>μ</i> F	0,15 <i>μ</i> F	76800 pF	0,1 μF
27,5	10	0,8	0,649 μF	0,909 μF	0,28 μF	0,402 μF	0,154 <i>μ</i> F	0,221 μF	0,102 μF	0,147 μF
27,5	11,25	0,8	0,931 <i>μ</i> F	1,21 μF	0,412 μF	0,536 μF	0,226 μF	0,294 μF	0,15 <i>μ</i> F	0,196 μF
27,5	12,5	0,8	1,24 μF	1,54 μF	0,549 μF	0,698 μF	0,3 μF	0,383 μF	0,2 μF	0,249 μF
32,5	12,5	0,8	1,58 <i>μ</i> F	1,96 μF	0,715 μF	0,866 μF	0,39 μ F	0,487 μF	0,255 μF	0,316 μF
32,5	15	0,8	2 μF	3,01 μF	0,887 μF	1,33 μF	0,499 μF	0,75 μF	0,324 μF	0,487 μF
32,5	17,5	0,8	3,09 <i>μ</i> F	4,22 μF	1,37 μF	1,78 μF	0,768 μF	1,07 μF	0,499 <i>μ</i> F	0,681 μF
32,5	20	0,8	4,32 μF	5,62 μF	1,8 μF	2,55 μF	1,1 μF	1,43 μF	0,698 µF	0,931 μF
max	max	+10% - 0,05	-			± 20% - ± 10% - :	± 5% - ± 2% - ± 1%			

HOW TO ORDER	HOW TO ORDER EXEMPLE DE CODIFICATION À LA COMMAN											
Model	UL : Flame retardant	W:RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})							
PP78 A	_	_	1 µF	± 5%	400 V							
Modèle	UL : Auto-extinguible	W : RoHS	Capacité	Tolérance sur capacité	Tension nominale (V_{CC})							

Tolerances on dimensions Tolérances dimensionnelles


Capacitance tolerances / Tolérances sur capacité

PP 78 R

RoHS = W

Radial leads Models PPM 3 and PPM 6to UTE C 93 156 standard

Sorties radiales
Modèles PPM 3 et PPM 6
de la norme UTE C 93 156
•

L (mm)	h (mm)	е	160 V _{CC}	250 V _{CC} I _{RA} *	400 V _{CC}	630 V _{CC} I _{RA} *
11,2	11,5	5	0,2/0,32	0,16/0,25	0,16/0,2	0,08/0,16
15	11,5	5	0,2/0,32	0,16/0,25	0,16/0,2	0,12/0,16
15	14,5	6,2	0,32/0,5	0,32/0,4	0,2/0,4	0,16/0,32
18,7	14,5	5	0,4/0,5	0,32/0,5	0,25/0,4	0,2/0,32
18,7	14,5	6,2	0,5/0,8	0,5	0,4/0,5	0,4/0,5
18,7	15,5	7,5	0,8/1	0,5/0,8	0,5/0,63	0,5/0,63
18,7	17,5	10	1/1,6	0,8/1,25	0,8/1,25	0,63/1
18,7	21,5	12,5	1,6/3,15	1,25/2,5	1,25/2	1/2
18,7	25,5	15	3,15/4	2,5/3,15	2/3,15	2/3,15
18,7	29,5	17,5	5/6,3	4/5	3,15/4	3,15/4
27,5	15,5	8,7	1	0,8	0,63/0,8	0,63
27,5	17,5	8,7	1/1,25	0,8/1	0,8	0,63/0,8
27,5	19,5	10	1,25/2	1/1,6	0,8/1,6	0,8/1,25
27,5	21,5	12,5	2/2,5	1,6/2,5	1,6/2	1,6/2
27,5	25,5	15	3,15/4	2,5/3,15	2/3,15	2/3,15
27,5	29,5	17,5	4/6,3	3,15/5	3,15/4	3,15/4
32,5	19,5	10	1,6/2	1,25/1,6	1,25	1,25
32,5	22,5	12,5	2/2,5	1,6/2	1,25/2,5	1,25/2
32,5	26	15	3,15/4	2,5/4	2,5/3,15	2/3,15
32,5	30	17,5	4/6,3	4/5	3,15/5	3,15/4

6,3/8

8/10

34,5 * I_{RA} : Permissible RMS current in amperes

20

22,5

PPM 3: Model for D.C. voltage

Modèle pour tension continue

PPM 6 :

Model for A.C. voltage Modèle pour tension alternative

DIELECTRIC

Metallized polypropylene

TECHNOLOGY

Self-healing, non-inductive Epoxy resin molded

MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

Polypropylène métallisé

TECHNOLOGIE

32

32.5

32,5

Autocicatrisable, non inductif Moulé résine époxy

MARQUAGE

5/6.3

6,3/8

modèle capacité tolérance tension nominale date-code

5/6,3

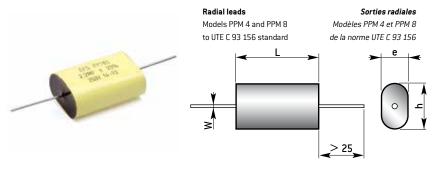
4/5

5/6,3

ELECTRICAL CHARACTERISTICS 55/085/56 Climatic category Catégorie climatique Performance class Classe de performance Stability class 2 Classe de stabilité Tg δ at 1 kHz ≤ 10.10-4 Tg δ à 1 kHz Insulation resistance for $C_R \le 0.33 \,\mu$ F \geq 100000 M Ω $pour C_R ≤ 0,33 μF$ Résistance d'isolement for $C_R > 0.33 \mu F$ \geq 30000 M Ω . μ F pour $C_R > 0.33 \mu F$ Test voltage 1,6 U_{RC} Tension d'essai Specified frequency for IRA 30 kHz Fréquence spécifiée pour I_{RA}

CAPACITA	NCE VALUE	S AND RATE	D VOLTAGE ([D.C.]						VALEUF	RS DE CAPACITÉ ET L	DE TENSION (U _{RC}
Dimensio	ns (mm)				U _{RC} 160 V U _{RA} 100 V		U _{RC} 2 U _{RA} 1			U _{RC} 400 V U _{RA} 200 V		30 V 250 V
L	h	е	Х	W	C _R min	C _R max	C _R min	C _R max	C _R min	C _R max	C _R min	C _R max
11,2	11,5	5	7,62	0,6	15400 pF	33200 pF	8450 pF	15000 pF	5230 pF	8250 pF	1000 pF	5110 pF
15	11,5	5	10,16	0,6	34000 pF	68100 pF	15400 pF	30100 pF	8450 pF	16000 pF	5230 pF	10000 pF
15	14,5	6,2	10,16	0,6	69800 pF	0,13 <i>µ</i> F	30900 pF	56200 pF	16200 pF	33200 pF	10200 pF	20000 pF
18,7	14,5	5	15,24	0,8	0,133 <i>μ</i> F	0,24 μF	57600 pF	0,11 <i>µ</i> F	34000 pF	62000 pF	20500 pF	39200 pF
18,7	14,5	6,2	15,24	0,8	0,243 μF	0,332 μF	0,113 μF	0,13 μF	63400 pF	82400 pF	40200 pF	51100 pF
18,7	15,5	7,5	15,24	0,8	0,34 μF	0,47 μF	0,133 μF	0,2 <i>μ</i> F	84500 pF	0,11 μF	52300 pF	75000 pF
18,7	17,5	10	15,24	0,8	0,475 μF	0,75 μF	0,205 μF	0,332 μF	0,113 <i>μ</i> F	0,18 μF	76800 pF	0,121 μF
18,7	21,5	12,5	15,24	0,8	0,768 μF C	1,3 μFC	0,34 μF C	0,562 μF C	0,182 μF C	0,332 μF C	0,124 μF C	0,221 μF C
18,7	25,5	15	15,24	0,8	1,33 <i>µ</i> F C	2 μFC	0,576 μF C	0,845 μF C	0,34 <i>μ</i> F C	0,511 μF C	0,226 μF C	0,332 μF C
18,7	29,5	17,5	15,24	0,8	2,05 µF C	2,7 μFC	0,866 μF C	1,21 μF C	0,523 μF C	0,681 μF C	0,34 μF C	0,475 μF C
27,5	15,5	8,7	22,86	0,8	0,768 μF	0,825 μF	0,34 <i>μ</i> F	0,392 μF	0,182 <i>μ</i> F	0,221 μF	0,124 μF	0,13 <i>µ</i> F
27,5	17,5	8,7	22,86	0,8	0,845 <i>μ</i> F	1 μF	0,402 μF	0,43 μF	0,226 μF	0,24 μF	0,133 μF	0,162 <i>μ</i> F
27,5	19,5	10	22,86	0,8	1,02 <i>μ</i> F	1,6 <i>μ</i> F	0,432 μF	0,75 <i>μ</i> F	0,243 μF	0,432 μF	0,165 μF	0,301 μF
27,5	21,5	12,5	22,86	0,8	1,62 μF M	2,4 μFM	0,768 μF M	1,1 <i>μ</i> F M	0,442 μF M	0,62 μF M	0,309 μF M	0,392 μF M
27,5	25,5	15	22,86	0,8	2,43 μF M	3,6 <i>μ</i> F M	1,13 μF M	1,6 μF M	0,634 μF M	0,91 μF M	0,402 μF M	0,62 μF M
27,5	29,5	17,5	22,86	0,8	3,65 μF M	5,11 <i>μ</i> F M	1,62 μF M	2,43 μF M	0,931 <i>μ</i> F M	1,3 μF M	0,634 μF M	0,91 μF M
32,5	19,5	10	27,94	1	1,62 μF	2 μF	0,768 μF	0,91 μF	0,442 μF	0,511 <i>μ</i> F	0,309 μF	0,365 μF
32,5	22,5	12,5	27,94	1	2,05 μF	3,01 <i>µ</i> F	0,931 μF	1,3 <i>μ</i> F	0,523 μF	0,825 μF	0,374 μF	0,511 μF
32,5	26	15	27,94	1	3,09 <i>μ</i> F	4,7 μF	1,33 μF	2,21 μF	0,845 μF	1,21 μF	0,523 μF	0,825 μF
32,5	30	17,5	27,94	1	4,75 μF	6,81 μF	2,26 µF	3,01 <i>µ</i> F	1,24 μF	1,8 μF	0,845 μF	1,1 μF
32,5	32	20	27,94	1	6,98 μF	8,25 <i>µ</i> F	3,09 μF	3,92 <i>µ</i> F	1,82 μF	2,21 μF	1,13 μF	1,4 µF
32,5	34,5	22,5	27,94	1	8,45 μF	10,2 μF	4,02 μF	4,75 μF	2,26 µF	2,7 μF	1,43 μF	1,8 μF
max	max	max	± 0,5	+10% - 0,05				+ 20% - + 10%	± 5% - ± 2% - ±1%			

 \pm 20% - \pm 10% - \pm 5% - \pm 2% - \pm 1% Capacitance tolerances / Tolérances sur capacité


Tolerances on dimensions Tolérances dimensionnelles Only / Uniquement **PPM 6**

HOW TO ORDER				EXEMPLE D	E CODIFICATION À LA COMMANDE
Model	M,C: Case (medium - short)	W:RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})
PP78 R	_	_	1 μF	± 20%	250 V
Modèle	M, C : Boîtier (moyen - court)	W : RoHS	Capacité	Tolérance sur capacité	Tension nominale (V_{CC})

PP 78 S

RoHS = W

DIELECTRIC

Metallized polypropylene

TECHNOLOGY

Self-healing, non-inductive

DIÉLECTRIQUE Polypropylène métallisé

TECHNOLOGIE Autocicatrisable,

non inductif

Polyester wrapped Epoxy resin sealed

Flame retardant (UL)

Enrobé polyester Obturé résine époxy

OPTION

Auto-extinguible (UL)

MARKING

model capacitance tolerance rated voltage date-code

MARQUAGE

modèle capacité tolérance tension nominale date-code

PPM 4 :Model for D.C. voltage
Modèle pour tension continue

Model for A.C. voltage Modèle pour tension alternative

L (mm)	h (mm)	е	160 V _{CC}	250 V _{CC} I _{RA} *	400 V _{CC}	630 V _{CC} I _{RA} *
12	7,5	4,5	0,2/0,32	0,2/0,27	0,16/0,2	0,08/0,16
14,5	7,5	4,5	0,2/0,32	0,16/0,27	0,16/0,2	0,12/0,16
14,5	11	4,5	0,4/0,5	0,32/0,4	0,25/0,4	0,2/0,32
20	11	4,5	0,4/0,5	0,32/0,5	0,25/0,4	0,2/0,32
20	11	5,7	0,63/0,8	0,5	0,4/0,5	0,4/0,5
20	12	7	0,8/1	0,63/0,8	0,63	0,5/0,63
20	13	8,2	1,25	1/1,25	0,8/1	0,8/1
20	14	9,5	1,25/1,6	1,25	1/1,25	1
20	16	9,5	2	1,6	1,25/1,6	1,25
20	18	12	2,5/3,15	2/2,5	1,6/2	1,25/2
20	22	14	3,15/4	2,5/3,15	2,5/3,15	2/3,15
20	26	16,5	5/6,3	4/5	4	3,15/4
28,5	12	7	1	0,8	0,63/0,8	0,63
28,5	13,5	7	1/1,25	1	0,8	0,63/0,8
28,5	14,5	8,2	1,25/1,6	1/1,25	0,8/1,25	0,8/1
28,5	16	9,5	1,6/2	1,6	1,25	1/1,25
28,5	18	12	2/2,5	1,6/2,5	1,6/2	1,6/2
28,5	22	14	3,15/4	2,5/3,15	2,5/3,15	2/3,15
28,5	26	16,5	5/6,3	4/5	3,15/4	3,15/4
33	16	9,5	1,6/2	1,25/1,6	1,25	1,25
33	19	12	2/2,5	2	1,6/2,5	1,6/2
33	22,5	14,5	3,15/4	2,5/4	2,5/3,15	2/3,15
33	26,5	17	5/6,3	4/5	3,15/5	3,15/4
33	28,5	19	6,3/8	6,3	5/6,3	4/5
33	31	21,5	8/10	8	6,3	5/6,3

ELECTRICAL CHARACTERISTICS				CARACTÉRISTIQUES ÉLECTRIQUES
Climatic category		55/085/56		Catégorie climatique
Performance class		1		Classe de performance
Stability class		2		Classe de stabilité
Tg δ at 1 kHz		≤ 10.10 ⁻⁴		Tg δ à 1 kHz
Insulation resistance	for C _R ≤ 0,33 μF	≥ 100000 MΩ	pour $C_R \le 0.33 \mu\text{F}$	Résistance d'isolement
	for $C_R > 0.33 \mu F$	≥ 30000 MΩ. µ F	pour $C_R > 0.33 \mu\text{F}$	
Test voltage		1,6 U _{RC}		Tension d'essai
Specified frequency for I _{RA}		30 kHz	·	Fréquence spécifiée pour I _{RA}

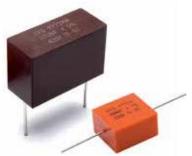
 I_{RA} : Permissible RMS current in amperes

^{*} I_{RA} : Intensité traversante admissible en ampères

CAPACITANC	E VALUES AND	RATED VOLTA	GE (D.C.)						VALEUR	S DE CAPACITÉ ET I	DE TENSION (U _{RC})
Dimensions	(mm)				160 V 100 V	U _{RC} 2 U _{RA} 1	250 V 160 V	U _{RC} 4 U _{RA} 2	400 V 200 V	U _{RC} 6 U _{RA} 2	330 V 250 V
L	h	е	W	C _R min	C _R max	C _R min	C _R max	C _R min	C _R max	C _R min	C _R max
12	7,5	4,5	0,6	16000 pF	33000 pF	9100 pF	15000 pF	5600 pF	8200 pF	1000 pF	5100 pF
14,5	7,5	4,5	0,6	36000 pF	68000 pF	16000 pF	30000 pF	9100 pF	16000 pF	5600 pF	10000 pF
14,5	11	4,5	0,6	75000 pF	0,13 <i>μ</i> F	33000 pF	56000 pF	18000 pF	33000 pF	11000 pF	20000 pF
20	11	4,5	0,8	0,15 μF	0,24 μF	62000 pF	0,11 <i>µ</i> F	36000 pF	62000 pF	22000 pF	39000 pF
20	11	5,75	0,8	0,27 μF	0,33 <i>μ</i> F	0,12 <i>μ</i> F	0,13 μF	68000 pF	82000 pF	43000 pF	51000 pF
20	12	7	0,8	0,36 μF	0,47 μF	0,15 <i>μ</i> F	0,2 <i>μ</i> F	91000 pF	0,11 <i>µ</i> F	56000 pF	75000 pF
20	13	8,25	0,8	0,51 <i>μ</i> F	0,56μF	0,22μF	0,27 <i>μ</i> F	0,12 μF	0,15 <i>μ</i> F	82000 pF	0,1 μF
20	14	9,5	0,8	0,62 μF	0,75 <i>μ</i> F	0,3 μF	0,33 <i>μ</i> F	0,16 μF	0,18 <i>µ</i> F	0,11 <i>μ</i> F	0,12 μF
20	16	9,5	0,8	0,82 <i>μ</i> F	0,91 <i>μ</i> F	0,36 <i>μ</i> F	0,43 µF	0,2 μF	0,24 <i>μ</i> F	0,13 μF	0,15 <i>μ</i> F
20	18	12	0,8	1 μF C	1,3 <i>µ</i> F C	0,47 μF C	0,56 μF C	0,27 μF C	0,33 μF C	0,16 μF C	0,22 μF C
20	22	14	0,8	1,5 μ F C	2 μF C	0,62 μF C	0,82 μF C	0,36 μF C	0,51 μF C	0,24 μ F C	0,33 μF C
20	26	16,5	0,8	2,2 µF C	2,7 µF C	0,91 μF C	1,2 μF C	0,56 μF C	0,68 μF C	0,36 μF C	0,47 μF C
28,5	12	7	1	0,82 <i>μ</i> F	0,82 μF	0,36 μF	0,39 <i>µ</i> F	0,2 μF	0,22 <i>µ</i> F	0,13 μF	0,13 μF
28,5	13,5	7	1	0,91 μF	1 <i>µ</i> F	0,43 μF	0,43 μF	0,24 <i>µ</i> F	0,24 <i>μ</i> F	0,15 μF	0,16 μF
28,5	14,5	8,25	1	1,1 <i>µ</i> F	1,3 <i>μ</i> F	0,47 μF	0,62 <i>µ</i> F	0,27 <i>μ</i> F	0,36 <i>μ</i> F	0,18 <i>μ</i> F	0,22 <i>μ</i> F
28,5	16	9,5	1	1,5 <i>µ</i> F	1,6 µF	0,68 µF	0,75 μF	0,39 <i>μ</i> F	0,43 µF	0,24 <i>μ</i> F	0,3 μF
28,5	18	12	1	1,8 μF M	2,4 μF M	0,82 μF M	1,1 μF M	0,47 μF M	0,62 μ F M	0,33 μF M	0,39 <i>μ</i> F M
28,5	22	14	1	2,7 μF M	3,6 μ F M	1,2 μF M	1,6 μF M	0,68 μF M	0,91 μF M	0,43 μF M	0,62 μF M
28,5	26	16,5	1	3,9 <i>µ</i> F M	5,1 μF M	1,8 μ F M	2,4 μF M	1 μF M	1,3 <i>μ</i> F M	0,68 μF M	0,91 μF M
33	16	9,5	1	1,8 <i>µ</i> F	2 <i>µ</i> F	0,82 <i>μ</i> F	0,91 <i>µ</i> F	0,47 μF	0,51 <i>μ</i> F	0,33 <i>μ</i> F	0,36 <i>μ</i> F
33	19	12	1	2,2 <i>µ</i> F	3 <i>µ</i> F	1 <i>μ</i> F	1,3 μF	0,56 <i>μ</i> F	0,82 µF	0,39 <i>µ</i> F	0,51 μF
33	22,5	14,5	1	3,3 <i>µ</i> F	4,7 μF	1,5 μF	2,2 <i>µ</i> F	0,91 μF	1,2 μF	0,56 <i>μ</i> F	0,82 <i>µ</i> F
33	26,5	17	1	5,1 <i>µ</i> F	6,8 <i>µ</i> F	2,4 µF	3 <i>µ</i> F	1,3 μF	1,8 <i>µ</i> F	0,91 μF	1,1 µF
33	28,5	19	1	7,5 µF	8,2 µF	3,3 <i>µ</i> F	3,9 <i>µ</i> F	2 <i>μ</i> F	2,2 <i>µ</i> F	1,2 <i>μ</i> F	1,3 <i>µ</i> F
33	31	21,5	1	9,1 <i>µ</i> F	10 μF	4,3 μF	4,7 μF	2,4 µF	2,7 μF	1,5 <i>μ</i> F	1,8 μF
max	max	max	+10% - 0,05				± 20% - ± 10% - :	± 5% - ± 2% - ± 1%			

Tolerances on dimensions Tolérances dimensionnelles

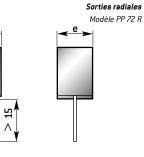
 \pm 20% - \pm 10% - \pm 5% - \pm 2% - \pm 1% Capacitance tolerances / Tolérances sur capacité


Only / Uniquement PPM 8

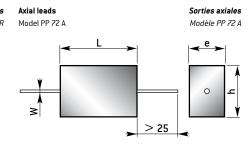
HOW TO ORDER					EXEMPLE DE CO	DIFICATION À LA COMMANDE
Model	C, M : Case option	UL : Flame retardant	W: RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})
PP 78 S	_	_	_	1 µF	± 1%	250 V
Modèle	C, M : Option boîtier	UL : Auto-extinguible	₩: RoHS	Capacité	Tolérance sur capacité	Tension nominale (V _{CC})

PP 72 R PP 72 A

RoHS = W


DIELECTRICMetallized polypropylene

W


Radial leads

Model PP 72 R

TECHNOLOGY MARKING
Self-healing, model
non-inductive capacitance
Epoxy resin molded tolerance
rated voltage
date-code

MARKING DIÉLECTRIQUE
model Polypropylène métallisé
capacitance
tolerance

TECHNOLOGIEAutocicatrisable,
non inductif
Moulé résine époxy

MARQUAGE modèle capacité tolérance tension nominale date-code

ELECTRICAL CHARACTERISTICS				CARACTÉRISTIQUES ÉLECTRIQUES
Climatic category		55/100/56		Catégorie climatique
Performance class		1		Classe de performance
Stability class		2		Classe de stabilité
Tg δ at 1 kHz	for $C_R \le 1 \mu F$	≤ 10.10-4	$pour C_R ≤ 1 μF$	Tg δ à 1 kHz
Tg δ at 100 kHz	for $C_R > 1 \mu F$	≤ 10.10-4	pour $C_R > 1 \mu F$	Tg δ à 100 kHz
Insulation resistance	for $C_R \le 0.22 \mu\text{F}$	≥ 500000 MΩ	pour $C_R \le 0.22 \mu\text{F}$	Résistance d'isolement
	for $C_R > 0.22 \mu F$	≥ 100000 MΩ. µ F	pour $C_R > 0.22 \mu\text{F}$	
Test voltage		1,6 U _{RC}		Tension d'essai
Specified frequency for I _{RA}		30 kHz		Fréquence spécifiée pour I _{RA}

^{*} I_{RA} : Permissible RMS current in amperes

^{*} I_{RA} : Intensité traversante admissible en ampères

CAPACITA	NCE VALUE	S AND RATE	D VOLTAGE	(D.C.)						VALEU	RS DE CAPACITÉ ET D	E TENSION (
Dimensi	ons (mm)				U _{RC} 160 V U _{RA} 100 V		U _{RC} 2 U _{RA} 1			U _{RC} 400 V U _{RA} 250 V		U _{RC} 630 V U _{RA} 330 V	
L	h	е	Х	W	C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA}	
11	9	5	7,62	0,6		•			4700 pF	0,1	1000 pF	0,08	
11	9	5	7,62	0,6							1500 pF	0,1	
11	9	5	7,62	0,6							2200 pF	0,1	
11	9	5	7,62	0,6							3300 pF	0,12	
14	8	5	10,16	0,6	22000 pF	0,2	10000 pF	0,16	6800 pF	0,16	4700 pF	0,12	
14	8	5	10,16	0,6	33000 pF	0,2	15000 pF	0,16					
14	11	7	10,16	0,6	47000 pF	0,2	22000 pF	0,16	10000 pF	0,16	6800 pF	0,12	
14	11	7	10,16	0,6	68000 pF	0,32	33000 pF	0,32	15000 pF	0,16	10000 pF	0,16	
18	11	7	15,24	0,8	0,1 μ F	0,32	47000 pF	0,32	22000 pF	0,2	15000 pF	0,16	
18	11	7	15,24	0,8	0,15 <i>μ</i> F	0,4	68000 pF	0,32	33000 pF	0,25	22000 pF	0,2	
18	12	8	15,24	0,8	0,22 μF	0,4	0,1 μF	0,5	47000 pF	0,32	33000 pF	0,32	
18	12	8	15,24	0,8	0,33 μF	0,8	0,15 μF	0,63	68000 pF	0,4	47000 pF	0,4	
18	16	10	15,24	0,8	0,47 μF	1	0,22 μF	1	0,1 μF	0,63	68000 pF	0,63	
18	16	10	15,24	0,8	0,68 μF	1,6	0,33 μF	1,25	0,15 μF	1	0,1 μF	1	
32	15	9	27,94	1	1 μF	1,25	0,47 μF	1	0,22 μF	0,8	0,15 μF	0,8	
32	16	10	27,94	1	1,5 <i>μ</i> F	1,6	0,68 μF	1,25	0,33 μF	1	0,22 μF	1	
32	18	12	27,94	1	2,2 μF	2	1 μF	2	0,47 μF	1,25	0,33 μF	1,25	
32	21	14	27,94	1	3,3 <i>μ</i> F	2,5	1,5 μF	2,5	0,68 μF	2	0,47 μF	1,6	
32	26	16	27,94	1	4,7 μF	4	2,2 μF	4	1 μF	2,5	0,68 μF	2,5	
32	29	20	27,94	1	6,8 <i>μ</i> F	6,3	3,3 μF	6,3	1,5 μF	4	1 μF	4	
+1 - 2	+1 - 2	± 1	$\pm 0,5$	+10% - 0,05				± 20% - ± 10% -	± 5% - ± 2% - ±1%				

 \pm 20% - \pm 10% - \pm 5% - \pm 2% - \pm 1% Capacitance tolerances / Tolérances sur capacité

HOW TO ORDER			EXE	MPLE DE CODIFICATION A LA COMMANDE
Model	W: RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})
PP 72 R	_	0,1 μF	± 20%	400 V
Modèle	W : RoHS	Capacité	Tolérance sur capacité	Tension nominale (V _{CC})

Tolerances on dimensions

Tolérances dimensionnelles

PP 72 S

RoHS = W

Modèle PP 72 S > 25

DIELECTRIC

Metallized polypropylene

TECHNOLOGY Self-healing, non-inductive Polyester wrapped Epoxy resin sealed

OPTION

Flame retardant (UL)

Axial leads

MARKING model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE Polypropylène métallisé

TECHNOLOGIE

Autocicatrisable, non inductif

Enrobé polyester Obturé résine époxy

Sorties axiales

OPTION

Auto-extinguible (UL)

MARQUAGE modèle capacité tolérance tension nominale date-code

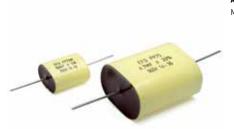
ELECTRICAL CHARACTERISTICS				CARACTÉRISTIQUES ÉLECTRIQUES
Climatic category		55/100/56		Catégorie climatique
Performance class		1		Classe de performance
Stability class		2		Classe de stabilité
Tg δ at 1 kHz	for $C_R \le 1 \mu F$	≤ 10.10 ⁻⁴	pour $C_R \le 1 \mu\text{F}$	Tg δ à 1 kHz
Tg δ at 100 kHz	for $C_R > 1 \mu F$	≤ 10.10-4	pour $C_R > 1 \mu F$	Tg δ à 100 kHz
Insulation resistance	for $C_R \le 0.22 \mu F$	≥ 500000 MΩ	$pour C_R ≤ 0,22 μF$	Résistance d'isolement
	for $C_R > 0.22 \mu F$	≥ 100000 MΩ . µ F	pour $C_R > 0.22 \mu\text{F}$	
Test voltage		1,6 U _{RC}		Tension d'essai
Specified frequency for IRA		30 kHz		Fréquence spécifiée pour I _{RA}

^{*} I_{RA} : Permissible RMS current in amperes

 $^{^*\}mathit{I}_{RA}$: Intensité traversante admissible en ampères

CAPACITANO	CAPACITANCE VALUES AND RATED VOLTAGE (D.C.) VALEURS DE CAPACITÉ ET DE TENSION (U _{RC})										E TENSION (U _{RC})
Dimensions	s (mm)			U _{RC} 160 V U _{RA} 100 V		U _{RC} 2! U _{RA} 16		U _{RC} 40 U _{RA} 21		U _{RC} 63 U _{RA} 33	
L		е	W	C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA}
13	5	2,5	0,6	22000 pF	0,12	10000 pF	0,1	6800 pF	0,1	1000 pF	0,08
13	5	2,5	0,6	33000 pF	0,16	15000 pF	0,12			1500 pF	0,1
13	5	2,5	0,6							2200 pF	0,1
13	5	2,5	0,6							3300 pF	0,1
13	5	2,5	0,6							4700 pF	0,12
13	6	3	0,6	47000 pF	0,2	22000 pF	0,16	10000 pF	0,16	6800 pF	0,12
13	6	3	0,6	68000 pF	0,32	33000 pF	0,32	15000 pF	0,16	10000 pF	0,16
18	6	3	0,8	0,1 <i>μ</i> F	0,32	47000 pF	0,32	22000 pF	0,25	15000 pF	0,16
18	6	3	0,8	0,15 μ F	0,4	68000 pF	0,32	33000 pF	0,25	22000 pF	0,2
18	7	5	0,8	0,22 μ F	0,5	0,1 μ F	0,5	47000 pF	0,32	33000 pF	0,32
18	8,5	5,5	0,8	0,33 μ F	0,8	0,15 μF	0,63	68000 pF	0,4	47000 pF	0,4
18	10	6,5	0,8	0,47 μ F	1	0,22 μ F	1	0,1 μ F	0,63	68000 pF	0,63
18	13	7	0,8	0,68 μ F	1,6	0,33 μF	1,25	0,15 μ F	1	0,1 μ F	1
31	10	6	1	1 μF	1	0,47 μF	1	0,22 μF	0,8	0,15 μF	0,63
31	11	7	1	1,5 μF	1,25	0,68 μF	1,25	0,33 μF	1	0,22 μF	1
31	12	9	1	2,2 μF	2	1 μF	2	0,47 μF	1,25	0,33 μF	1,25
31	16	10	1	3,3 <i>μ</i> F	3,15	1,5 μF	2,5	0,68 μF	2	0,47 μF	1,6
31	20	12	1	4,7 μF	4	2,2 μF	4	1 μF	2,5	0,68 μF	2,5
31	24	14	1	6,8 μF	6,3	3,3 μF	6,3	1,5 μF	4	1 μF	4
± 2	± 2	± 2	+10% - 0,05	± 20% - ± 10% - ± 5% - ± 2% - ±1%							

Tolerances on dimensions Tolérances dimensionnelles


Capacitance tolerances / Tolérances sur capacité

HOW TO ORDER EXEMPLE DE CODIFICATION À LA COMMAND											
Model	UL: Flame retardant	W:RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})						
PP 72 R	-	-	0,1 µF	± 10%	400 V						
Modèle	UL : Auto-extinguible	W : RoHS	Capacité	Tolérance sur capacité	Tension nominale (V_{CC})						

PP 73 - PP 74 - PP 75

RoHS = W

Axial leads $\mathsf{Models}\,\mathsf{PP}\,\mathsf{73}-\mathsf{PP}\,\mathsf{74}-\mathsf{PP}\,\mathsf{75}$ > 25 Sorties axiales

Modèles PP 73 – PP 74 – PP 75

DIELECTRIC

Metallized polypropylene

TECHNOLOGY

Self-healing, non-inductive

Polyester wrapped Epoxy resin sealed

Flame retardant (UL)

MARKING

model capacitance tolerance rated voltage DIÉLECTRIQUE

Polypropylène métallisé

TECHNOLOGIE Autocicatrisable,

non inductif

Enrobé polyester Obturé résine époxy

OPTION

Auto-extinguible (UL)

MARQUAGE

modèle capacité tolérance tension nominale date-code

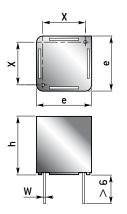
non-inductive		date-code	non indu		 date-code
ELECTRICAL CHARACTERISTIC	S				CARACTÉRISTIQUES ÉLECTRIQUES
Climatic category			55/85/56		Catégorie climatique
Performance class			1		Classe de performance
Stability class			2		Classe de stabilité
Tg δ at 1 kHz	for C	_R ≤ 1 <i>µ</i> F	≤ 10.10 ⁻⁴	pour $C_R \le 1 \mu\text{F}$	Tg δ à 1 kHz
Tg δ at 100 kHz	for C	_R >1 <i>µ</i> F	≤ 10.10 ⁻⁴	pour $C_R > 1 \mu F$	Tg δ à 100 kHz
Insulation resistance	for C	_R ≤ 0,22 <i>µ</i> F	\geq 250000 M Ω	pour $C_R \le 0,22 \mu\text{F}$	Résistance d'isolement
	for C	_R >0,22 µF	≥ 50000 MΩ. µ F	pour $C_R > 0.22 \mu\text{F}$	
Test voltage			400 V		Tension d'essai
Specified frequency for I _{RA}			30 kHz		Fréquence spécifiée pour I _{RA}

 $^{^*\}operatorname{I}_{\operatorname{RA}}$: Permissible RMS current in amperes

^{*} I_{RA} : Intensité traversante admissible en ampères

APACITANCE VALUES	AND RATED VOLTAGE	(D.C.)										V	ALEURS DE			ION (U _{RC}
Models / Modèles	C _R		U _{RA} 160 \	/ Dimensio				U _{RA} 200	V Dimensio				U _{RA} 250 \	/ Dimensio	<u> </u>	
1000137 11000103	o _K	L	h	е	W	I _{RA} *	L	h	е	W	I _{RA} *	L	h	е	W	I _{RA} *
_	10 nF											20	8	3,5	0,8	0,25
	15 nF											20	8	4	0,8	0,25
	22 nF						20	8	4	0,8	0,25	20	11	4,5	0,8	0,32
-	33 nF						20	10,5	4	0,8	0,32	20	11	4,5	0,8	0,3
-	47 nF	20	7,5	3,5	0,8	0,25	20	11	4,5	0,8	0,32	20	11	6	0,8	0,5
	68 nF	20	10,5	4,5	0,8	0,4	20	11	6	0,8	0,5	20	12	7	0,8	0,6
PP 73	0,1 μF	20	11	4,5	0,8	0,5	20	11,5	6,5	0,8	0,63	20	13,5	8,5	0,8	1
	0,15 μF	20	11,5	6	0,8	0,63	20	13	8	0,8	1	20	15,5	10	0,8	1,2
	0,22 <i>µ</i> F	20	12,5	7,5	0,8	1	20	15	10	0,8	1,6	20	18	11,5	0,8	2
_	0,33 <i>μ</i> F	20	14,5	9,5	0,8	1,25	20	17,5	11,5	0,8	2	20	21	14,5	0,8	3,1
_	0,47 μF	20	16	11,5	0,8	2	20	20,5	14	0,8	3,15					
_	0,68 <i>µ</i> F	20	19	13	0,8	3,15										
	1 μF	20	22	16	0,8	4										
_	0,15 <i>µ</i> F											29	14	7	1	0,6
	0,22 <i>µ</i> F						29	12	7	1	0,63	29	14,5	8	1	1
_	0,33 μF	29	11,5	6,5	1	0,63	29	14,5	8	1	1	29	17	10,5	1	1,2
PP 74	0,47 μF	29	14	7,5	1	1	29	17	10	1	1,6	29	19	12,5	1	2
	0,68 <i>µ</i> F	29	15,5	9	1	1,6	29	19	12	1	2,5	29	22	15,5	1	3,1
_	1 μF	29	17,5	11	1	2	29	21,5	15	1	3,15	29	23,5	17,5	1	4
_	1,5 μF	29	20	13,5	1	3,15										
	2,2 μF	29	23,5	17	1	4										
_	0,1 μF											33	10	5,5	1	0,4
	0,15 μF											33	11,5	6,5	1	0,6
-	0,22 <i>µ</i> F						33	11	6,5	1	0,63	33	13	8	1	0,8
-	0,33 μF						33	12,5	8	1	1	33	15,5	9,5	1	1,2
-	0,47 μF	33	12	7	1	0,8	33	15,5	9	1	1,25	33	18,5	11,5	1	1,6
PP 75	0,68 µF	33	14,5	8	1	1,25	33	18	11	1	2	33	21	13	1	2,!
-	1 μF	33	16,5	10	1	2	33	20,5	12,5	1	2,5	33	25	15,5	1	4
-	1,5 μF	33	20	12	1	2,5	33	24,5	15	1	5					
_	2,2 μF	33	22,5	14,5	1	4	33	28,5	19	1	5					
_	3,3 μF	33	26,5	17	1	5										
	4,7 μF	33	30,5	21	1	8										
± 20% - ± 10% - ±	5% - ± 2% - ± 1%	max	max	max	+10% - 0,05		max	max	max	+10% - 0,05		max	max	max	+10% - 0,05	

Capacitance tolerances / Tolérances sur capacité Tolerances on dimensions / Tolérances dimensionnelles


HOW TO ORDER	HOW TO ORDER EXEMPLE DE CODIFICATION À LA COMMANDE											
Model	UL : Flame retardant	W: RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})							
PP 73	_	_	1 μF	± 10%	200 V							
Modèle	UL : Auto-extinguible	W : RoHS	Capacité	Tolérance sur capacité	Tension nominale (V _{CC})							

PP 20 RoHS = W

Radial leads PP 20 Model PPM 9 to UTE C 93 156 standard

Sorties radiales PP 20 Modèle PPM 9 de la norme UTE C 93 156

DIELECTRIC Metallized polypropylene

TECHNOLOGYSelf-healing, non-inductive Thermoplastic case Epoxy resin sealed

MARKING model capacitance tolerance rated voltage

date-code

DIÉLECTRIQUE Polypropylène métallisé

TECHNOLOGIE Autocicatrisable, non inductif Boîtier thermoplastique Obturé résine époxy

MARQUAGE modèle capacité tolérance tension nominale date-code

ELECTRICAL CHARACTERISTICS				CARACTÉRISTIQUES ÉLECTRIQUES
Climatic category		55/085/56		Catégorie climatique
Performance class		1		Classe de performance
Stability class		1		Classe de stabilité
Tg δ at 1 kHz		≤ 10.10-4		Tg δ à 1 kHz
Insulation resistance	for C _R ≤ 0,33 μF	≥ 100000 MΩ	$pour C_R ≤ 0,33 \mu F$	Résistance d'isolement
	for C _R > 0,33 μF	≥ 30000 MΩ. µ F	pour $C_R > 0.33 \mu\text{F}$	
Test voltage	-	1.6 Upc	·	Tension d'essai

CAPACITAN	CAPACITANCE VALUES AND RATED VOLTAGE (D.C.) VALEURS DE CAPACITÉ ET DE TENSION (U _{rc}											
Dimension	s (mm)				16	0 V		250 V				
h	е	Х	W	C _R	C _R	C _R	C _R	C _R	C _R	C _R	C _R	
13,5	7,5	5,08	0,6	21000 pF	22000 pF	24000 pF	27000 pF	1000 pF	1100 pF	1200 pF	1300 pF	
13,5	7,5	5,08	0,6	30000 pF	33000 pF	36000 pF	39000 pF	1500 pF	1600 pF	1800 pF	2000 pF	
13,5	7,5	5,08	0,6	43000 pF	47000 pF	51000 pF	56000 pF	2200 pF	2400 pF	2700 pF	3000 pF	
13,5	7,5	5,08	0,6	62000 pF	68000 pF	75000 pF	82000 pF	3300 pF	3600 pF	3900 pF	4300 pF	
13,5	7,5	5,08	0,6	91000 pF	0,1 μF			4700 pF	5100 pF	5600 pF	6200 pF	
13,5	7,5	5,08	0,6					6800 pF	7500 pF	8200 pF	9100 pF	
13,5	7,5	5,08	0,6					10000 pF	11000 pF	12000 pF	13000 pF	
13,5	7,5	5,08	0,6					15000 pF	16000 pF	18000 pF	20000 pF	
13,5	7,5	5,08	0,6					22000 pF	24000 pF	27000 pF	30000 pF	
13,5	7,5	5,08	0,6					33000 pF	33200 pF			
13,5	10	7,62	0,6					34000 pF	36000 pF	39000 pF	43000 pF	
13,5	10	7,62	0,6	0,102 <i>μ</i> F	0,11 μF	0,12 <i>μ</i> F	0,13 <i>μ</i> F	47000 pF	51000 pF	56000 pF	62000 pF	
13,5	10	7,62	0,6	0,15 <i>μ</i> F	0,16 μF	0,18 <i>μ</i> F	0,205 μF	68000 pF	75000 pF	82000 pF	82500 pF	
13,5	12,5	10,16	0,6			0,21 <i>μ</i> F	0,22 μF			84200 pF	91000 pF	
13,5	12,5	10,16	0,6	0,24 μF	0,27 μF	0,3 <i>μ</i> F	0,33 μF	0,1 <i>μ</i> F	0,11 <i>μ</i> F	0,12 <i>μ</i> F	0,13 μF	
13,5	12,5	10,16	0,6	0,36 μF	0,39 μF	0,43 μF	0,432 μF	0,15 μF	0,16 <i>μ</i> F	0,18 μF	0,182 μF	
max	max	± 0,3	+10% - 0,05	± 20% - ± 10% - ± 5% - ± 2% - ± 1%								
		n dimensions <i>mensionnelles</i>	;	Capacitance tolerances / Tolérances sur capacité								

HOW TO ORDER EXEMPLE DE CODIFICATION À LA COMMA										
Model	W:RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})						
PP 20	_	7500 pF	± 5%	250 V						
Modèle	W : RoHS	Capacité	Tolérance sur capacité	Tension nominale (V _{CC})						

IGB 99 RoHS = W

Case Boîtier	L ±0,3	H ±0,3	E Max	R _{th} *	
1	42,5	30	45	18	
2	42,5	28	38	21	
3	42,5	22	30	28	

- * R_{th}: thermal resistance in °C/W
- * R_{th} : résistance thermique en °C/W

DIELECTRIC

metallized polypropylene

TECHNOLOGY self-healing, non inductive Plastic case Resin sealed

Flame retardant resin (as per classification ÙL VO)

APPLICATION

SNUBBER capacitor IGBT and power semi-conductor

MARKING

model capacitance tolerance rated voltage date-code

14,5 \pm 0,5

DIÉLECTRIQUE Polypropylène métallisé

Obturé résine

0,8 ± 0,1 |

TECHNOLOGIEAutocicatrisable, non inductif Boîtier thermoplastique

Auto-extinguible (suivant classification ÙL VO)

APPLICATION Condensateur "SNUBBER" IGBT et semi-conducteur de puissance

10,2 ± 0,5 14^{±0,5} **25,5** ± 0,5

MARQUAGE modèle

capacité tolérance tension nominale date-code

ELECTRICAL CHARACTERISTICS				CARACTÉRISTIQUES ÉLECTRIQUES
Operating temperature		− 40°C + 85°C		Température d'utilisation
Climatic category		40/85/56		Catégorie climatique
Dissipation factor at 1 kHz		≤ 5.10-4		Tangente de l'angle de pertes à 1 kHz
Insulation resistance	for C _R ≤ 0,33 μF	≥ 100000 MΩ	$pour C_R ≤ 0,33 μF$	Résistance d'isolement
	for $C_R > 0.33 \mu\text{F}$	≥ 30000 MΩ	pour $C_R > 0.33 \mu\text{F}$	
Withstand voltage		1,6 U _{RC} / 10 s		Tension de tenue
Withstand voltage between leads and case		3000 V - 50 Hz - 1 mn		Tension de tenue entre bornes réunies et masse
Serie inductance		≤ 25 nH		Inductance série

For other characteristics see page 58 Autres caractéristiques voir page 58

CAPACITANCE VALUES AND RATED VOLTAGE (D.C.) VALEURS DE CAPACITÉ ET DE TENSION (U _{RC})																				
Voltage / Tension U _{RC}	850 V _{cc}			1000 V _{CC}			1200 V _{CC}			2000 V _{CC}				3000 V _{CC}						
Voltage / Tension U _{RA}	450 V _{CA}			480 V _{CA}				500 V _{CA}			630 V _{CA}				750 V _{CA}					
Dimensions (mm)	Case Boîtier	I _{RA} (1)	l²t (2)	dV/dt (3)	Case Boîtier	I _{RA} (1)	l²t (2)	dV/dt (3)	Case Boîtier	I _{RA} (1)	l ² t (2)	dV/dt (3)	Case Boîtier	I _{RA} (1)	l ² t (2)	dV/dt (3)	Case Boîtier	I _{RA} (1)	l²t (2)	dV/dt (3)
47 nF																	3	4,5	0,04	1900
0,1 μF													3	6,3	0,08	1200	2	7,5	0,12	1500
0,15													3	8,5	0,15	1100	2	11	0,26	1500
0,22													2	12,5	0,32	1100	1	15	0,48	1400
0,33									3	12	0,35	800	2	16,5	0,57	1000				
0,47	3	10	0,46	600	3	12	0,49	660	2	17	0,7	800	1	21	0,89	850				
0,68	3	10	0,97	600	3	14	0,65	530	2	19	1	660	1	21	1,36	750				
1	3	10	0,33	300	2	17	1,4	530	1	22	2,2	660								
1,2	2	12	0,47	300	1	20	2	530	1	22	2,5	600								
1,5	2	15	0,74	250	1	20	3,1	530	1	22	3,1	530								
2	2	17	1	220	1	20	1,8	210												
2,2	2	19	1,2	220																-
2,5	1	21	1,6	220																

 $\pm~20\%$ - $\pm~10\%$ - $\pm~5\%$ Capacitance tolerances / *Tolérances sur capacité* (F = 100 kHz)

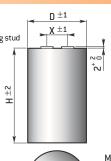
(F = 100 kHz)

 $\{1\}\,I_{g,k}$: Rms current in amperes for a max, temperature of 85°C on the capacitor in operation $\{2\}\,I^2$ t : Pulse current in A²s

(3) dV/dt : Permitted voltage variation in V/ μ s For intermediate value, the dimensions are those of the immediately superior value [1] I_{RA} : Courant eff. en ampères pour une température max. de 85°C sur le condensateur en fonctionnement [2] I^2 t : Courant impulsionnel en A^2 s [3] dV/dt: Variation admissible de la tension en V/μ s

Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure

HOW TO ORDER	10W TO ORDER EXEMPLE DE CODIFICATION À LA COMMAND												
Model	Case	UL: Flame retardant	W:RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})							
IGB 99	1	-	-	1 µF	± 10%	1200 V							
Modèle	Boîtier	UL : Auto-extinguible	W : RoHS	Capacité	Tolérance sur capacité	Tension nominale (V _{CC})							



PM 98 - PM 980

RoHS = W

PM 98 without mounting stud sans fixation

PM 980 with mounting stud avec fixation

Screw terminals Bornes à vis	Terminal Borne		
М	b	D	Х
M 5 x 10	0 13	50	22,2
M 6 x 10	0 18	76	31,7
M 6 x 10	0 18	90	31,7

Tightening torque = 10 N.m Couple de serrage = 10 N.m

DIELECTRIC

metallized plastic film

TECHNOLOGY

self-healing, non inductive PM 98 and PM 980 Aluminium tube screw terminals

or threaded stud (PM 980)

APPLICATIONS

Filtering, energy storage, flash

MARKING

model capacitance tolerance rated voltage RMS current date-code

DIÉLECTRIQUE

Film plastique métallisé

TECHNOLOGIE

Autocicatrisable, non inductif PM 98 et PM 980 Tube aluminium Sorties par bornes à vis

ou téton fileté (PM 980)

APPLICATIONS

Filtrage, accumulation d'énergie, flash

MARQUAGE

modèle capacité tolérance tension nominale Intensité nominale date-code

ELECTRICAL CHARACTERISTICS		CARACTÉRISTIQUES ÉLECTRIQUES
Operating temperature	− 55°C + 85°C	Température d'utilisation
Dissipation factor at 100 Hz	≤ 10.10 ·3	Tangente de l'angle de pertes à 100 Hz
Insulation resistance	≥ 2500 MΩ µ F	Résistance d'isolement
Withstand voltage	1,3 U _{RC} / 10 s	Tension de tenue

For other characteristics see page 58 Autres caractéristiques voir page 58 CAPACITANCE VALUES AND RATED VOLTAGE (D.C.)

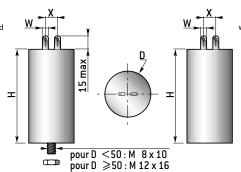
Voltage / Tension U _{RC}			300	O V _{CC}					400	V _{CC}			500 V _{CC}						60	O V _{CC}				
Voltage / Tension U _{RA}			40	V _{CA}					48	V _{CA}					63	V _{CA}					10	O V _{CA}		
Dimensions (mm)	D	Н	I _{RA} (1)	l²t (2)	dV/dt [3]	ESR (4)	D	Н	I _{RA} (1)	l²t (2)	dV/dt [3]	ESR (4)	D	Н	I _{RA} (1)	l²t (2)	dV/dt [3]	ESR (4)	D	Н	I _{RA} (1)		dV/dt (3)	ESR (4)
90 μF 140													50	85	22	7.7	19	4.5	50 50	85 115	19 19	5,5 5,5	26 16	4,9 6,1
165													- 50	- 00				1,0	76	85	42	32	30	4,2 7,6
180 200				-			50	85	26	9,4	17	4,3	50	115	22	7.7	13	5.7	50	145	19	5,5	13	7,6
220																			76	85	47	32	25	3,2
230	50	85	26	13	15								76	85	52	47	18	7,1						
240 250	50	85	Zb_	13	15	4	50	115	26	9.4	12	5.4										-		
280							30	113		3,4	-10		50	145	22	7,7	9	6,7						
330													76	85	52	47	19	3	76	115	47	32	17	3,7
350 360	50	115	26	13	10	4,9	50	145	26	9.4	8	6,2	/b	85	52	47	19	3						
400 450						- 1,5	76	145 85 85	59 59	9,4 67	19 18	2,8 2,9												
450 470	50	145	26	13	7	5,8	76	85	59	67	18	2,9							76	145	47	32	12	4,3
500	50	145	26	13		5,8							76	115	52	47	13	3,5						
600	76	85	59	85	15	2,8																		
630 680							76	115	59	67	12	3,3							90	145	54	32	8	3,8
700							7.6	112	23	br	12		76	145	52	47	9	3,9						
900	76	115	59	85	10	3,2	76	145	59	67	9	3,7												
1000 1200							90	145	59	67	6	3,4	90	145	59	47	6	3,5						
1250 1600	76	145 145	59 59	85 85	7	3,5	30	143	33	or		3,4											-	
	90	145			5	3,5 3,3																		
Voltage / Tension U _{RC}			750	O V _{CC}					100	O V _{CC}					120	O V _{CC}								
Voltage / Tension U _{RA}			130	O V _{CA}					200	O V _{CA}					250	V _{CA}								
25 μF													50	85	16,3	1,5	50	7						
36 38							50	85	14	2,2	41	6,4	50	115	10.2	1 -	22	0						
50	50	67	14,5	5,6	35	4	76	85	36	13	40	5,8	50	145	16,3 16,3	1,5 1,5	33 25	9 12,5						
56				•			50	85 115	14	2,2	40 26	8,2												
60 63	50	85	17	3,6	30	5,4	50	145	14	2,2	19	10,2	76	85	40,7	9	50	4,5						
75	30	03	ΤI	3,0	30	3,4	76	85	36	13	40	3,7												
90																								
100 100 B	50 76	115 85	17 42	3,6	18 30	6,8 5,1							76	115	40,7	9	32	5,6						
125	50	145	14	3,6 24 3,6	15	8,7																		
130							76	115	36	13	25	4,5	76	145	40,7	9	24	6,4						
140 160	76	85	42	24	30	3.3																		
180			- 12			- 5,5	76	145	36	13	18	5,3	90	145	40,7	9	18	5,5						
190	70	445	42	24	40	2.0	90	145	36	13	14	4,6												
250 330	76 76	115 145	42 42	24 24	19 14	3,9 4,6																		
330 450	90	145	48	24 24	10	4																		
							+ 2	N% - +	10% - Ca	nacitano	e tolera	nces /	Tolérano	es sur i	capacité									

± 20% - ± 10% - Capacitance tolerances / Tolérances sur capacité

- For intermediate value, the dimensions are those of the immediately superior value
- [1] I_{RA} : Courant efficace admissible en ampères à 25°C [2] I^2 t: Courant impulsionnel en A^2 s [3] dV/dt: Gradient de potentiel admissible en V/μ s

 - (4) ESR : Résistance série équivalente à 10 kHz en m Ω
 - Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure

HOW TO ORDER EXEMPLE DE CODIFICATION À LA COMMANDE											
Model	UL : Flame retardant	W: RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})						
PM 98	_	1	400 μF	± 10%	400 V						
Modèle	UL : Auto-extinguible	W : RoHS	Capacité	Tolérance sur capacité	Tension nominale (V_{CC})						



PPA-1/2 PPA-M 1/M 2

RoHS = W

PPA 1 PPA M 1 with mounting stud avec fixation

PPA 2 PPA M 2 without mounting stud sans fixation

	D ≤ 30	D ≥ 35
Х	10	13
W	2.86	6.35

Tightening torque : see page 61 Couple de serrage : voir page 61

DIELECTRIC

metallized polypropylene

TECHNOLOGY

self-healing, non inductive Aluminium tube Tag terminals

OPTIONAL FEATURE

Flame retardant (as per classification UL VO)

APPLICATIONS

motor run, fluorescence, compensation

MARKING

model capacitance tolerance rated voltage operating temperature date-code

On request: Flexible wire leads

DIÉLECTRIQUE Polypropylène métallisé

TECHNOLOGIE

Autocicatrisable, non inductif Tube aluminium Sorties par languettes plates

OPTION

Auto-extinguible (suivant classification ÙL VO)

APPLICATIONS

Phase auxiliaire moteur, fluorescence, compensation

MARQUAGE

modèle capacité tolérance tension nominale température d'utilisation date-code

Sur demande : Sorties par fils souples

ELECTRICAL CHARACTERISTICS				CARACTÉRISTIQUES ÉLECTRIQUES
Operating temperature	for C _R ≤ 68 μ F	− 40°C + 85°C	pour C _R ≤ 68 μF	Température d'utilisation
	for $C_R > 68 \mu F$	-40°C + 70°C	pour C _R > 68 μF	
Dissipation factor at 100 kHz		≤ 10.10-4		Tangente de l'angle de pertes à 100 kHz
Insulation resistance	for $C_R \leq 330 \text{ nF}$	≥ 30000 MΩ	pour $C_R \le 330 \text{ nF}$	Résistance d'isolement
	for $C_R > 330 \text{ nF}$	10000 M Ω μ F	pour $C_R > 330 \text{ nF}$	
Withstand voltage		1,5 U _{RC}		Tension de tenue
Temperature coefficient		– 250 ppm/°C		Coefficient de température
Withstand voltage between leads and case		2000 V - 50 Hz		Tension de tenue entre bornes réunies et masse

For other characteristics see page 58

Autres caractéristiques voir page 58

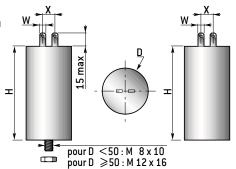
CAPACITANCE VALUES AND RATED VOLTAGE (D.C.)													VALEURS D	E CAPACITÉ	ET DE TENS	ION (U _{RC})
Voltage / <i>Tension</i> U _{RA} 50 Hz ou 60 Hz		260 V _{CA} - 400 V _{CA}					- 10 000 h - 3 000 h			400 V _{CA} ·	- 10 000 h			450 V _{CA}	- 10 000 h	
Dimensions (mm)	PPA	-1/2	PPA-I	M1/M2	PP/	\-1/2	PPA-M	11/M2	PP/	\-1/2	PPA-M	1/M2	PPA	PPA-1/2		11/M2
Capacité C _R																
1,5 μF									30	58	30	58	30	58	30	58
2	25	58	25	58	25	58	25	58	30	58	30	58	30	58	30	58
2,5	25	58	25	58	25	58	25	58	30	68	30	58	30	68	30	58
3	30	58	25	58	30	68	30	58	30	68	30	58	30	68	30	68
4	25	68	30	58	30	68	30	58	30	68	30	68	35	68	30	68
5	30	68	30	58	35	68	30	68	35	68	30	68	40	68	35	68
6	30	68	30	68	35	68	30	68	35	78	35	78	40	78	35	78
7	35	68	30	68	35	78	35	78	35	78	35	78	40	78	40	78
8	35	68	30	68	35	78	35	78	35	78	35	78	40	78	40	78
10	35	78	35	78	40	78	35	78	40	96	40	78	46	96	40	96
12	40	78	35	78	40	96	40	78	46	96	40	78	46	96	45	96
16	40	78	40	78	46	96	40	78	46	121	40	96	46	121	45	121
20	40	96	40	78	46	121	45	96	50	121	45	96	50	121	45	121
25	46	96	40	96	50	121	45	96	55	121	45	121	55	121	50	121
30	46	121	40	96	55	121	45	121	60	121	45	121	60	121	55	121
40	50	121	40	121	60	121	50	121	65	121	50	121	70	121	60	121
50	55	121	45	121	70	121	55	121	70	121	60	121	80	124	70	121
60	60	121	45	121	80	124	60	121	80	124	60	121	90	124	70	121
70	65	121	50	121	80	124	60	121	80	124	70	121	90	124	80	124
80	70	121	60	121	90	124	70	121	90	124	70	121			80	124
90	80	124	60	121	90	124	70	121	90	124	70	121			90	124*
100	80	124	60	121			80	124			80	124				
120	90	124	60	121			80	124*			80	124*				
150	90	124	70	121			90	124*			90	124*				
200			80	124*												
260			90	124*												
Tolérances dimensionnelles (mm)	± 1	max	± 1	max	± 1	max	± 1	max	± 1	max	± 1	max	± 1	max	± 1	max

± 20% - ± 10% - ± 5% - Capacitance tolerances / Tolérances sur capacité

* Double lug outputs 6,35 mm * Sorties cosses doubles 6,35 mm

For intermediate value, the dimensions are those of the immediately superior value Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure

HOW TO ORDER	HOW TO ORDER EXEMPLE DE CODIFICATION À LA COMMANDE											
Model	Service life	UL: Flame retardant	W:RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{AC})						
PPA-1	10 000 h	-	-	40 μF	± 10%	400 V						
Modèle	Durée de vie	UL : Auto-extinguible	W : RoHS	Capacité	Tolérance sur capacité	Tension nom. (V _{CA})						



PPA-FR 1 PPA-FR 2

RoHS = W

PPA FR 1 with mounting stud avec fixation

PPA FR 2 without mounting stud sans fixation

	D ≤ 30	D ≥ 35
Х	10	13
W	2.86	6 35

Tightening torque : see page 61 Couple de serrage : voir page 61

DIELECTRIC

metallized polypropylene

TECHNOLOGY self-healing, non inductive

Aluminium tube Tag terminals

OPTIONAL FEATURE

Flame retardant (as per classification UL VO)

APPLICATIONS

motor run, fluorescence, compensation

MARKING

model capacitance tolerance rated voltage operating temperature date-code

On request : Flexible wire

leads

DIÉLECTRIQUE Polypropylène métallisé

TECHNOLOGIE

Autocicatrisable, non inductif Tube aluminium Sorties par languettes plates

OPTION

Auto-extinguible (suivant classification UL VO)

APPLICATIONS

Phase auxiliaire moteur, fluorescence, compensation

MARQUAGE modèle capacité tolérance tension nominale température d'utilisation date-code

Sur demande : Sorties par fils souples

				•
ELECTRICAL CHARACTERISTICS				CARACTÉRISTIQUES ÉLECTRIQUES
Operating temperature		− 40°C + 85°C		Température d'utilisation
Dissipation factor at 100 kHz		≤ 10.10-4		Tangente de l'angle de pertes à 100 kHz
Insulation resistance	for $C_R \leq 330 \text{ nF}$	≥ 30000 MΩ	pour $C_R \le 330 \text{ nF}$	Résistance d'isolement
	for C _R > 330 nF	10000 MΩ μ F	pour C _R > 330 nF	
Withstand voltage		1,5 U _{RC}		Tension de tenue
Temperature coefficient		− 250 ppm/°C		Coefficient de température
Withstand voltage between leads and case		2000 V - 50 Hz		Tension de tenue entre bornes réunies et masse

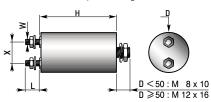
For other characteristics see page 58

Autres caractéristiques voir page 58

CAPACITANCE VALUES	AND RATED V	OLTAGE (D.C.)								VALEURS DE CA	APACITÉ ET DE T	ENSION (U _{RC})	
Voltage / Tension U _{RA} 50 Hz ou 60 Hz		500/	550 V _{CA}			650/	700 V _{CA}		850 / 900 V _{CA}				
Dimensions (mm)		PPA-FR1	- PPA-FR2			PPA-FR1	- PPA-FR2		PPA-FR1 - PPA-FR2				
Capacité C _R													
1,5 <i>µ</i> F	30	68	10	2,86	40	68	13	6,35	40	78	13	6,35	
2	35	68	13	6,35	40	78	13	6,35	40	96	13	6,35	
2,5	35	78	13	6,35	40	96	13	6,35	46	96	13	6,35	
3	40	78	13	6,35	40	96	13	6,35	46	96	13	6,35	
4	40	96	13	6,35	46	121	13	6,35	46	121	13	6,35	
5	46	96	13	6,35	46	121	13	6,35	50	121	13	6,35	
6	46	96	13	6,35	50	121	13	6,35	55	121	13	6,35	
7	46	121	13	6,35	50	121	13	6,35	60	121	13	6,35	
8	46	121	13	6,35	55	121	13	6,35	65	121	13	6,35	
9	46	121	13	6,35	55	121	13	6,35	65	121	13	6,35	
10	50	121	13	6,35	60	121	13	6,35	70	121	13	6,35	
11	50	121	13	6,35	60	121	13	6,35	80	124	13	6,35	
12	55	121	13	6,35	65	121	13	6,35	80	124	13	6,35	
13	55	121	13	6,35	65	121	13	6,35	90	124	13	6,35	
15	60	121	13	6,35	70	121	13	6,35	90	124	13	6,35	
16	65	121	13	6,35	80	124	13	6,35					
17,5	65	121	13	6,35	80	124	13	6,35					
20	70	121	13	6,35	90	124	13	6,35					
25	80	124	13	6,35									
30	90	124	13	6,35									
Tolérances dimensionnelles (mm)	± 1	max	± 1	max	± 1	max	± 1	max	± 1	max	± 1	max	
				± 20% - ± 10% -	± 5% - Capacita	ance tolerances	/ Tolérances s	sur capacité					

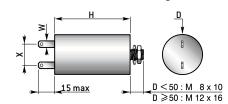
For intermediate value, the dimensions are those of the immediately superior value

HOW TO ORDER	HOW TO ORDER EXEMPLE DE CODIFICATION À LA COMMANDE												
Model	UL: Flame retardant	W: RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{AC})								
PPA-FR1	-	-	10 µF	± 10%	650/700V								
Modèle	UL : Auto-extinguible	W : RoHS	Capacité	Tolérance sur capacité	Tension nom. (V_{CA})								



PP 44 R

RoHS = W



PP 44 R with threaded outputs / avec tiges filetées

0 du corps D \pm 1	≤ 45	≥ 50 ≤ 60	≥ 65			
Entraxe X ±1	16	25,4	35			
$I_{RA} > 12,5 A \le 33 A$	W:M5L:16 ±2					
IpA > 33 A	W:M8L:20 ±2					

PP 44 R with lugs / avec cosses

lightening torque : see page 61	L
Couple de serrage : voir page 61	[

I _{RA} ≤ 12,5 A								
$D \pm 1$	≤ 30	≥ 35						
X ±1	10	13						
W	2.86	6.35						

DIELECTRIC

metallized Polypropylene

TECHNOLOGY

Aluminium tube Flame retardant resin Leads by radial threaded outputs or by lugs

APPLICATIONS

semi-conductor protecdecoupling, current inverters

MARKING model

Capacitance - Tolerance Rated voltage Rms current Date - Code

DIÉLECTRIQUE Polypropylène métallisé

TECHNOLOGIE Tube aluminium

radiales ou cosses Fixation par vis

APPLICATIONS Protection des semiconducteurs,

MARQUAGE Modèle

Capacité - Tolérance Tension nominale Intensité efficace Date - Code

Résine auto-extinguible Sorties par tiges filetées découplage, onduleurs ELECTRICAL CHARACTERISTICS CARACTÉRISTIQUES ÉLECTRIQUES - 40°C + 85°C Température d'utilisation Operating temperature Dissipation factor at 50 kHz for $C_R \le 40 \,\mu\text{F}$ ≤ 10.10-4 $pour C_R ≤ 40 μF$ Tangente de l'angle de pertes à 50 kHz for $40 \,\mu\text{F} < C_R \le 70 \,\mu\text{F}$ pour 40 μ F < $C_R \le 70 \mu$ F for $C_R > 70 \,\mu\text{F}$ pour $C_R > 70 \,\mu\text{F}$ ≥ 2500 MΩ µF Insulation resistance Résistance d'isolement Withstand voltage $\mathbf{1,5}\,\mathbf{U_{RC}}\,/\,\mathbf{1mn}$ Tension de tenue 2 U_{RA} (1500 V - 50 Hz min.) Withstand voltage between leads and case Tension de tenue entre bornes réunies et masse

For other characteristics see page 58

Autres caractéristiques voir page 58

CAPACITANCE VA	UES AN	D RATE	D VOLTA	GE (D. <u>C</u>																ALEURS	DE CAF	ACITÉ L	ET DE TI	ENSION	(U_{RC})
Voltage / Tension U _R			300 V _C					400 V _{CC}					500 V _{CC}					600 V _C			800 V _{CC}				
Voltage / Tension U	A		190 V _C	Α				250 V _C					300 V _{CA}					380 V _C					500 V _{CA}		
Dimensions (mm) Capacité C _R			I _{RA} (1)	l²t (2)	0(3)			I _{RA} (1)	I2t (2)	0(3)			I _{RA} (1)	l²t (2)	0 (3)			I _{RA} (1)	I2t (2)	Q (3)			I _{RA} (1)	I2t (2)	0 (3)
0,68 μF																					30	57	4,3	0,19	1,97
1																30	57	4,1	0,23	1,55	35	57	6,4	0,4	2,4
1,5											30	57	3,1	0,08	0,93	35	57	6,2	0,51	2,21	40	57	9,5	0,91	2,86
2,2						30	57	3,3	0,11	0,82	35	57	4,5	0,17	1,35	40	57	9,1	1,1	2,64	45	72	10	1,01	3,84
3,3	30	57	3,2	0,14	0,6	30	57	4	0,25	1	40	57	6,5	0,39	1,94	45	57	13,5	2,48	3,35	60	57	21	4,4	5
3,3 L																					40	97	9,4	0,87	4,22
4,7 4,7 L	30	57	4,5	0,28	0,85	35	57	7	0,5	1,74	45	57	9,5	0,79	2,74	55	57	19 8,6	5,03 0,99	3,88	65	57	29	8,93	5,87
4,7 L	35	57	6,5	0,59	1,23	40	57	10	1,05	2,23	50	57	14	1,64	3,36	40 55	97 72		5,42	4,32	45	97 62	12,5 38	1,76	4,43 7,85
6,8 L	35	- or	0,5	0,59	1,23	40	5r	10	1,05	2,23	50	or_	14	1,04	3,36	45	97	20 12,5	2,06	3,86	80 55	97	19	18,7 3,69	5,87
10	40	57	9,5	1,28	1,8	50	57	14	2,28	3,12	65	57	20	3,56	4,44	60	72	29	11,7	5,58	80	75	44	20,8	8,25
10 L	35	72	6,9	0,65	1,3	35	97	6,5	0,47	1,61	45	97	9,5	0,74	2,83	45	125	12,5	2,2	3,77	55	125	19	3,91	5,97
12	40	57	11,5	1,84	2	55	57	18	3,28	3,48	65	57	24	5,12	4,65	65	72	35	16,8	6,1	90	75	50	30	9,8
12 L	40		11,5	1,04		40	97	8	0,68	1,98	45	97	11	1,06	3,29	55	97	22	6,47	5,44	60	125	23	5,64	6,69
15	45	57	14.5	2,88	2,48	60	57	22	5,12	3.95	70	57	31	8	5.3	76	75	44	26,3	7,14	80	102	42	17,9	9,54
15 L		82	8	0,89	1,51	40	97	10	1,06	2,47	50	97	14	1,66	3,99	60	97	27	10,1	6,19	65	125	29	8,81	7,66
20	50	57	19	5,12	2,83	65	57	29	9,1	4,55	80	62	41	14,2	6,5	90	75	55	46,9	8,35	90	102	55	32,6	11,3
20 L	40	97	8,5	1,06	1,61	50	97	13,5	1,88	3,34	60	97	18,5	2,94	4,81	70	102	36	17,9	7,35	70	150	32	10,4	8,64
25	55	57	24	8	3,2	76	57	35	14,2	5,35	90	62	51	22,2	7,49	76	102	45	28	8,28	90	125	48	24,4	11
25 L	45	97	12,6	1,66	2,07	55	97	17	2,94	3,98	65	97	22	4,6	5,44	65	125	27	13,7	6,92	70	175	20	6,32	8,25
30	60	57	29	11,5	3,71	80	62	42	20,4	6,07	80	75	44	16,3	6,96	90	102	55	40,4	9,53	90	130	55	35,2	11,7
30 L	45	97	13	2,38	2,45	60	97	20	4,24	4,42	60	125	13	1,61	3,82	70	125	33	19,8	7,49	76	175	24	9,1	9,19
40	70	62	38	20,4	4,53	90	62	58	36,4	6,99	90	75	55	29	7,92	76	125	45	35,2	8,71	80	175	32	16,1	10,3
40 L	50	97	17	4,24	3,17	65	97	25	7,54	5,03	65	125	17	2,86	5,09	70	150	36	23,5	7,8					
50	76	62	45	32	5,05	90	75	50	29	7,26	90	102	45	18,4	8,48	90	130	55	55	10,6	90	180	40	25,2	12,1
50 L		97	20	6,62	3,51	70	97	32	11,7	5,79	70	125	22	4,46	6,08	80	150	48	36,8	9,3					
60	80	62	54	46	5,44	90	75	58	41,8	7,48	90	102	55	26,5	8,99	90	150	55	53	10,8					
60 L		97	25	9,54	4,01	76	102	40	16,9	6,36	80	125	26	6,42	6,96	76	180	30	20,4	8,71					
80	90	62	60	81,9	6,17	90	102	54	30,1	8,01	90	130	35	11,4	8,6	90	180	40	36,4	10,5					
80 L	65	102	35	16,9	4,72	70	125	24	7,31	5,65															
100	76	102	44	26,5	5,67	80	130	30	11,4	6,87	90	150	36	12,3	8,77										
120	80	102	52	38,1	6,26	90	130	36	16,4	7,77	90	180	36	12,1	8,82								-		
150	90	102	60	59,6	6,97	90	150	39	17,7	7,95															
170 200	00	120	20	25.3	C F0	90	180	36	15,5	7,67															
250	90	130	38	25,7	6,58																				
	90	150	41	27,7	6,8								-											-	
300 Tolérances dim. (mm)	± 1	180 max	38	27,2	6,46	± 1	max				± 1	max				± 1					± 1	max			

± 10% - ± 5% - Capacitance tolerances / Tolérances sur capacité

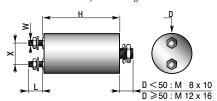
(1) I_{RA} : Rms current in amperes (F=10kHz) for a max. temperature of 75°C on the capacitor in operation [2] |2 t : Pulse current in A2s [3] 0 : Reactive power in kVAR in a sinewave load for an ambient temperature of 60°C

For intermediate value, the dimensions are those of the immediately superior value

 $\underbrace{(1)\, I_{RA} : \text{Courant eff. en ampères } \{\text{F=10kHz}\} \text{ pour une température max. de 75}^{\text{C}} \text{ sur le condensateur en fonctionnement le fonctionn$

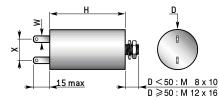
(2) |2 t : Courant impulsionnel en A²s (3) 0 : Puissance réactive en kVAR en régime sinusoïdal pour une température ambiante de 60°C Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure

HOW TO ORDER					EXEMPLE DE CO	DIFICATION À LA COMMANDE
Model	L::Long case	UL: Flame retardant	W: RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})
PP 44 R	_	-	-	100 µF	± 10%	300 V
Modèle	L : Boîtier Long	UL : Auto-extinguible	W: RoHS	Capacité	Tolérance sur capacité	Tension nominale (V_{CC})



PP 44 R

RoHS = W



PP 44 R with threaded outputs / avec tiges filetées

0 du corps D ± 1	≤ 45	≥ 50 ≤ 60	≥ 65			
Entraxe X ± 1	16	25,4	35			
$I_{RA} > 12,5 A \le 33 A$	W:M5L:16 ±2					
I _{RA} > 33 A	W:M8L:20 ±2					

PP 44 R with lugs / avec cosses

Tightening torque : see page 61
Couple de serrage : voir page 61

I _{RA} ≤ 12,5 A								
D ±1	≥ 35							
$X \pm 1$	10	13						
W	2,86	6,35						

DIELECTRIC

metallized Polypropylene

TECHNOLOGY

Aluminium tube Flame retardant resin outputs or by lugs

APPLICATIONS semi-conductor protec-

decoupling, current

MARKING

model Capacitance - Tolerance Rated voltage

Rms current Date - Code

DIÉLECTRIQUE

Polypropylène métallisé

TECHNOLOGIE

Tube aluminium Résine auto-extinguible

radiales ou cosses Fixation par vis

APPLICATIONS

Protection des semiconducteurs,

MARQUAGE Modèle

Capacité - Tolérance Tension nominale Intensité efficace Date - Code

Leads by radial threaded	inverters	Sorties par tiges	filetées découplage, o	nduleurs
ELECTRICAL CHARACTERISTICS		_		CARACTÉRISTIQUES ÉLECTRIQUES
Operating temperature		− 40°C + 85°C		Température d'utilisation
Dissipation factor at 50 kHz	for $C_R \le 40 \mu\text{F}$	≤ 10.10 ⁻⁴	pour C _R ≤ 40 μF	Tangente de l'angle de pertes à 50 kHz
	for $40 \mu\text{F} < C_R \le 70 \mu\text{F}$		pour 40 μ F < $C_R \le 70 \mu$ F	
	for $C_R > 70 \mu\text{F}$		pour C _R > 70 μF	
Insulation resistance		≥ 2500 M Ω μ F		Résistance d'isolement
Withstand voltage		1,5 U _{RC} / 1mn		Tension de tenue
Withstand voltage between lead	ls and case	2 U _{RA} (1500 V - 50 Hz min.)		Tension de tenue entre bornes réunies et masse

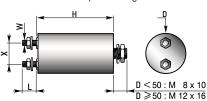
For other characteristics see page 58

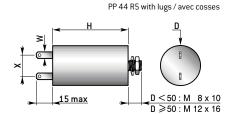
Autres caractéristiques voir page 58

CAPACITANCE VALU	ES AND	RATED VO														VALEURS	DE CAP		E TENSIO	N (U _{RC})
Voltage / <i>Tension</i> U _{RC}			1000 V _{CC}					1200 V _{CC}					1600 V _{CC}					2000 V _{CC}		
Voltage / <i>Tension</i> U _{RA}			600 V _{CA}					750 V _{CA}					1000 V _{CA}	DO V _{CA} 1200 V _{CA}						
Dimensions (mm) Capacité C _R			I _{RA} (1)	l²t (2)	0 (3)			I _{RA} (1)	l²t (2)	0 (3)			I _{RA} (1)	l²t (2)	0(3)			I _{RA} [1]	I2t (2)	0 (3)
0,1 μF																35	57	4,2	0,14	2,76
0,12											30	57	3,6	0,13	2,28					
0,15											35	57	4,5	0,2	2,73	40	57	6,4	0,31	3,27
0,22						30	57	3,8	0,24	2,22	35	57	6,4	0,43	2,78	45	57	8,5	0,67	3,79
0,33	30	57	3	0,07	1,8	35	57	5,7	0,54	2,68	40	57	8,5	0,96	3,28	50	57	10	1,5	4,33
0,47	35	57	4,3	0,14	2,58	40	57	8,1	1,09	3,16	50	57	11	1,95	4,44	60	57	15	3,04	5,06
0,47 L																40	97	8,2	0,52	5,19
0,68	35	57	6,2	0,29	2,49	45	57	11,5	2,29	3,85	55	57	14	4,07	5,02	60	72	19	2,83	6,21
0,68 L																45	97	11,9	1,09	5,94
1	40	57	9,1	0,63	2,96	45	72	10	2,2	4,4	65	57	21	8,81	6,57	90	62	30	13,7	8,19
1 L											45	97	12	1,51	5,75	55	97	17	2,36	7,55
1,5	45	72	9,8	0,73	4,05	65	57	22	11,1	5,99	80	62	32	19,8	8,11	80	75	32	13,7	9,23
1,5 L						45	97	10	1,91	5,33	55	97	18	3,39	7,35	55	135	15	1,94	8,14
2,2	60	57	20	3,06	4,68	76	62	30	23,9	7,23	80	75	43	18,9	9,12	80	102	35	11,4	11,1
2,2 L	50	72	12,5	1,58	4,63	50	97	12,5	4,11	6,03	65	97	27	7,3	9,05	60	150	19	3	9,45
3,3	70	57	28	6,88	6,31	90	62	40	53,9	9,8	80	102	38	16,4	11	76	135	33	9,37	12,3
3,3 L	50	97	12,5	1,36	5,19	60	97	23	9,24	7,81	60	135	22	6	9,02	65	175	16	2,83	10,9
4,7	80	92	35	13,9	7,65	90	75	50	48,6	9,55	90	102	54	33,3	13,2	90	135	45	19	15,3
4,7 L	60	67	18	2,76	6,7	60	145	20	6,84	8,06	70	150	29	8,78	11,2	76	175	22	5,75	13,1
6,8	80	75	42	15	8,46	80	102	42	39,2	11,3	80	150	43	18,3	13,4	90	175	32	12	16,6
6,8 L	60	125	18	2,83	6,84	65	145	25	14,3	9,13	70	175	22	7,7	11,7					
10	80	102	38	12,4	9,84	80	135	40	30,9	12	90	175	33	16,6	15,7					
10 L	60	145	21	3,88	7,24	76	150	35	22,3	11,6										
12	90	102	46	17,9	10,4	90	135	48	44,5	14	90	180	39	23,9	16,2					
12 L	70	145	25	5,59	7,46	70	175	25	13,4	10,8										
15	80	125	38	13,7	10,5	90	150	50	50,2	14,5										
15 L	70	175	17	3,55	8,65	80	175	30	21	12,9										
20	90	150	40	15,5	12,2	90	180	42	37,4	15,2										
20 L	76	175	23	6,32	9,95															
25	80	175	29	9,87	11,3															
30	90	180	35	14,2	12,8															
Tolérances dim. (mm)	± 1	max				± 1	max				± 1	max				± 1	max			

- $\{1\}$ I_{RA} : Rms current in amperes for a max. temperature of 75°C on the capacitor in operation $\{2\}$ I^2 t : Pulse current in A²s $\{3\}$ 0 : Reactive power in kVAR in a sinewave load for an ambient temperature of 60°C For intermediate value, the dimensions are those of the immediately superior value
- [1] I_{RA}: Courant eff. en ampères pour une température max. de 75°C sur le condensateur en fonctionnement
 [2] I² t: Courant impulsionnel en A²s
 [3] 0: Puissance réactive en kVAR en régime sinusoïdal pour une température ambiante de 60°C
- - Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure

HOW TO ORDER					EXEMPLE DE CO	DIFICATION À LA COMMANDE
Model	L: Long case	UL: Flame retardant	W: RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})
PP 44 R	-	-	_	100 µF	± 10%	300 V
Modèle	L: Boîtier Long	III : Auto-extinguible	W : RoHS	Capacité	Tolérance sur capacité	Tension nominale (Vcc)




PP 44 R5

RoHS = W

PP 44 R5 with threaded outputs / avec tiges filetées

 $\begin{array}{c|cccc} & I_{RA} \leq 12,5 \text{ A} \\ \hline D \pm 1 & = 30 & \geq 35 \\ \hline X \pm 1 & 10 & 13 \\ \hline W & 2,86 & 6,35 \\ \hline \end{array}$

DIELECTRIC

metallized Polypropylene

TECHNOLOGY

self healing Aluminium tube mounting with threated stud Flame retardant resin sealed Leads by lugs or threaded outputs

APPLICATIONS

semi-conductor protection, medium power capacitor, decoupling, high current filtering

MARKING model

Capacitance - Tolerance Rated voltage Rms current Date - Code

DIÉLECTRIQUE Polypropylène métallisé

TECHNOLOGIE Autocicatrisable

Étui aluminium avec fixation par vis Obturé résine auto-extinguible

Sorties par cosses ou tiges filetées

APPLICATIONS

Protection des semi-conducteurs, condensateur moyenne puissance, découplage, filtrage fort courant

MARQUAGE Modèle

Capacité - Tolérance Tension nominale Intensité efficace Date - Code

ELECTRICAL CHARACTERISTICS		CARACTÉRISTIQUES ÉLECTRIQUES
Operating temperature	− 40°C + 85°C	Température d'utilisation
Dissipation factor at 100 kHz	≤ 10.10-4	Tangente de l'angle de pertes à 100 kHz
Insulation resistance under 500 V _{CC}	≥ 3000 MΩ µ F	Résistance d'isolement sous 500 $V_{\it CC}$
Withstand voltage	1,5 U _{RC} / 1mn	Tension de tenue
Withstand voltage between leads and case	2 U _{RA} (1500 V - 50 Hz min.)	Tension de tenue entre bornes réunies et masse

Autres caractéristiques voir page 58

For other characteri	stics se	e page	58																	Autres	caracte	éristiqu	es voir p	age 58
CAPACITANCE VALU	ES AND	RATED	VOLTAG	E (D.C.)															VALEU	RS DE CA	PACITÉ	ET DE T	ENSION	(U _{RC})
Voltage / Tension U _{RC}		48	O V _{CC}			63	O V _{CC}			80	O V _{CC}			95	O V _{CC}			12!	50 V _{CC}			160	O V _{CC}	
Voltage / Tension U _{RA}		25	O V _{ca}			331) V _{CA}			40	O V _{CA}			50	O V _{CA}			66	O V _{CA}			800) V _{CA}	
Dimensions (mm) Capacité C _R			I _{RA} (1)	l ² t (2)			I _{RA} (1)	l²t (2)			I _{RA} (1)	l²t (2)			I _{RA} (1)	l²t (2)			I _{RA} (1)	l²t (2)			I _{RA} (1)	I ² t (2)
0,33 μF																					30	58	3	0,08
0,47				with lugs	outputs	;															30	58	4,3	0,16
0,68			5	Sorties av	ec cosse	es											30	58	4,5	0,21	35	58	6,2	0,33
1													30	58	4,4	0,26	35	58	6,7	0,46	40	58	9,1	0,71
1,5									30	58	3,7	0,12	35	58	6,5	0,58	40	58	10	1,02	45	58	12,5	1,72
2,2					30	58	4,1	0,17	30	58	4,5	0,17	35	58	9,6	1,24	40	68	10	1,03	45	68	12,5	1,6
3,3	30	58	4,3	0,25	30	58	4,9	0,25	35	58	6,7	0,39	40	58	12,5	2,79	45	78	12,1	1,49	45	96	12,5	1,53
4,7	30	58	4,6	0,28	35	58	7	0,5	40	58	9,5	0,79	40	68	12,5	2,51	45	96	12,5	1,99	80	62	43	16
6,8	35	58	6,6	0,59	40	58	10,2	1,05	45	58	12,5	1,64	40	78	11,2	1,7	76	62	45	21	80	75	42	15
10	40	58	9,7	1,28	45	58	12,5	2,28	50	68	12,5	1,82	45	96	12,5	2,34	90	62	69	49	90	87	50	21
12	40	58	11,7	1,84	45	68	12,5	1,67	45	78	12,5	1,58	76	62	45	28	90	75	55	31	90	102	49	20
15	45	58	12,5	2,88	45	78	12,5	1,58	45	96	12,5	1,66	80	62	54	40	90	75	68	48	80	130	40	8
20	45	68	12,5	2,62	45	96	12,5	1,88	80	62	41	14	90	62	68	62	90	102	60	36	80	150	40	9
25	40	78	12,5	2,47	70	62	38	14	90	62	50	22	80	75	60	48	80	130	45	14	90	150	40	14
30	40	96	12,5	2,38	76	62	45	20	90	62	60	32	90	75	75	76	90	130	45	20	90	180	40	13
40	70	62	39	20	90	62	60	36	90	75	58	29	90	87	73	72	90	150	45	24				
50	76	62	49	32	80	75	54	29	90	90	56	27	90	102	75	84	90	180	45	23				
60	80	62	58	46	90	75	64	42	90	102	55	26	90	130	45	31								
65													90	150	45	30								
80	90	62	75	82	90	90	67	45	90	130	45	11	90	180	45	33								
100	90	75	70	65	90	102	68	24	90	150	45	12												
120	90	90	65	57	90	130	45	16	90	180	40	12			1				1					
150	90	102	66	60	90	150	45	18								th thread ies avec								
200	90	130	45	26	90	180	45	22							3010	ics avec	uges ille	1662						
250 300	90	150	45 45	28																				
	90	180	45	28																				
Tolérances dim. (mm)	± 1	max			± 1	max	20%		± 1	max			± 1	max		-14.7	± 1	max			± 1	max		

 \pm 20% - \pm 10% - \pm 5% - Capacitance tolerances / *Tolérances sur capacité*

[1] I_{RA} : Rms current in amperes (F=10kHz) for temperature of 60°C on the capacitor in operation (1) I_{RA} : Courant efficace en ampères (F=10kHz) pour une température de 60°C sur le condensateur en fonctionnement (2) I^2 t : Pulse current in A²s

For intermediate value, the dimensions are those of the immediately superior value $\,$

Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure

HOW TO ORDER				EXEMPLE D	E CODIFICATION A LA COMMANDE
Model	UL: Flame retardant	W:RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})
PP 44 R5	_	-	100 µF	± 10%	630 V
Modèle	UL : Auto-extinguible	W : RoHS	Capacité	Tolérance sur capacité	Tension nominale (V _{CC})

PP 44 A2 RoHS = W

DIELECTRIC metallized Polypropylene

TECHNOLOGY self-healing Polyester wrapped

Resin sealed Flame retardant sealed

APPLICATIONS

medium power capacitor, medium frequency tuning, high current filtering, semi-conductor protection

MARKING

model Capacitance - Tolerance Rated voltage Rms current Date - Code

PP 44 A2

M8x8 ≥2

DIÉLECTRIQUE

Polypropylène métallisé

TECHNOLOGIE

Autocicatrisable Enrobé polyester Obturé résine Enrobage auto-extinguible

APPLICATIONS

Condensateurs moyenne puissance, accord moyenne fréquence, filtrage fort courant, protection des semiconducteurs

Tightening torque 10 N.m Couple de serrage max. 10 N.m

MARQUAGE

Modèle Capacité - Tolérance Tension nominale Intensité efficace Date - Code

ELECTRICAL CHARACTERISTICS		CARACTÉRISTIQUES ÉLECTRIQUES
Operating temperature	− 40°C + 100°C	Température d'utilisation
Dissipation factor at 100 Hz	≤ 10.10 ⁻⁴	Tangente de l'angle de pertes à 100 Hz
Insulation resistance under 500 V _{CC}	≥ 3000 MΩ µ F	Résistance d'isolement sous 500 V_{CC}
Withstand voltage	1,5 U _{RC} / 10 s	Tension de tenue
Parasit series inductance	≤ 20 to 40 nH	Inductance série parasite
Decrease of the rated voltage U_{RC} or U_{RA} versus temperature between 70 $^{\circ}C$ and 100 $^{\circ}C$	1,67 % /°C	Décroissance de la tension U _{RC} ou U _{RA} en fonction de la température entre 70°C et 100°C

For other characteristics see page 58 Autres caractéristiques voir page 58

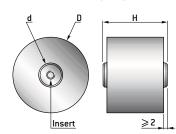
CAPACITANCE VALUE	ED VOLTAGE	(D.C.)										VALEURS D	DE CAPACITÉ ET DE TENSION (U _{RC}) 1000 V _{CC} 220 V _{CA} H (1)				
Voltage / Tension U _{RC}		600	V _{cc}			750	V _{CC}			900	V _{cc}			100	O V _{CC}		
Voltage / Tension U _{RA}		120	V _{CA}			150	V _{CA}			180	V _{CA}			220	V _{CA}		
Dimensions (mm) Capacité C _R	D	H (1)	I _{RA} (2)	l²t	D	H (1)	I _{RA} (2)	l²t	D	H (1)	I _{RA} (2)	l²t	D	H (1)	I _{RA} (2)	l²t	
25 <i>µ</i> F									64	42	50	24	74	42	55	33	
50					74	42	80	67	63	62	45	22	72	62	50	30	
75									75	62	70	49	86	62	80	67	
100	83	42	100	170	73	62	75	60	85	62	90	87	84	78	75	58	
150					87	62	100	135	87	78	90	97					
200	81	62	100	150	85	78	85	120									
300	83	78	100	170													
Voltage / Tension U _{RC}		1200	O V _{CC}			140	O V _{CC}			180	O V _{CC}			240	D V _{CC}		
Voltage / Tension U _{RA}		250	V _{CA}			300) V _{CA}			380	V _{CA}			500	V _{CA}		
12 μF													82	62	45	20	
20									80	62	55	31	87	78	50	27	
25	87	42	70	54	75	62	55	34	87	62	65	48					
33					84	62	75	45	84	78	60	42					
50	83	62	65	43	86	78	75	67									
75	84	78	65	46													
Tolérances dim. (mm)	max	± 2			max	± 2			max	± 2			max	± 2			

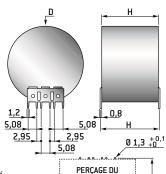
[1] $|_{RA}$: Permitted Rms current in amperes for a temperature of 50°C [F = 10 kHz] [2] $|^2$ t: Pulse current in A²s

[1] I_{RA} : Courant efficace admissible en ampères pour une température de 50°C (F = 10 kHz) {2} I_{RA} : Courant impulsionnel en I_{RA} 2

For intermediate value, the dimensions are those of the immediately superior value

Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure


HOW TO ORDER				EXEMPLE D	E CODIFICATION À LA COMMANDE
Model	UL : Flame retardant	W:RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})
PP 44 A2	_	-	100 µF	± 10%	1000 V
Modèle	UL : Auto-extinguible	W : RoHS	Capacité	Tolérance sur capacité	Tension nominale (V _{CC})


PP 88 RoHS = W

PP 88 with inserts / avec inserts (R, S, T)

PP 88 With solderable picots platers / avec picots soudables (P)

CIRCUIT IMPRIMÉ PRINTED BOARD

DRILLING

DIELECTRIC metallized Polypropylene

TECHNOLOGY

self-healing non inductive Insulating protection resin sealed Flame retardant wrapped Threaded insert outputs or lug outputs for connection to printed board

Outputs / Sorties (inserts)	R	S	T
d ±1	18	18	27
Insert	M6x6	M8x8	M8x8
Tightening torque	6 N m	10 N m	10 N m

APPLICATIONS

Protection of thyristors Protection of gate turn off thyristors GTO medium frequency tuning

MARKING

model Capacitance - Tolerance Rated voltage Rms current Date - Code

DIÉLECTRIQUE

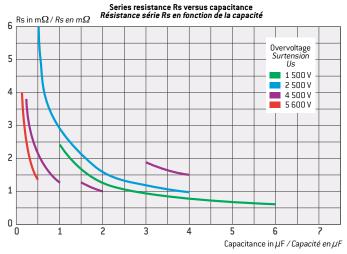
Polypropylène métallisé

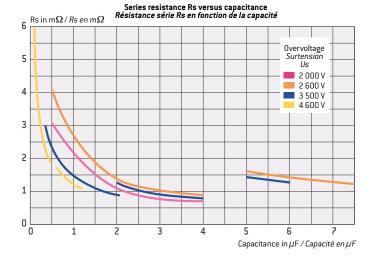
TECHNOLOGIE

Autocicatrisable, non inductif Protection isolante obturé résine Enrobage auto-extinguible Sorties par inserts taraudés ou par picots soudables pour raccordement sur circuit imprimé pour ≤25 A

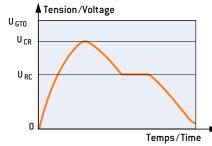
APPLICATIONS

Protection des thyristors Extinction des thyristors GTO Accord moyenne fréquence


MARQUAGE


Modèle Capacité - Tolérance Tension nominale Intensité efficace Date - Code

ELECTRICAL CHARACTERISTICS				CARACTÉRISTIQUES ÉLECTRIQUES
Operating temperature		– 40°C + 85°C		Température d'utilisation
Dissipation factor at 100 kHz		≤ 3.10-4		Tangente de l'angle de pertes à 100 kHz
Insulation resistance under 500 V _{CC}		≥ 3000 MΩ µ F		Résistance d'isolement sous 500 V _{cc}
Withstand voltage		1,5 U _{RC} / 10 s		Tension de tenue
Parasit series inductance	for H ≤ 62	≤ 10 nH	pour H ≤ 62	Inductance série parasite
	for H > 62	< 20 nH	nour H > 62	


For other characteristics see page 58

Autres caractéristiques voir page 58

Wave shape typical of a GTO / Forme d'onde typique aux bornes d'un GTO

UGTO: Permitted overvoltage (Withstand voltage of the related GTO) Surtension admissible (Tension de tenue du GTO associable) U_{CR}: Peak voltage in normal operation Tension crête en fonctionnement normal

U_{RC}: Rated voltage in D.C. operation Tension nominale en continu

Surtensi (U_S) 1 500 V 800 V 1 200 V 1 500 V 500 V 2 000 V 1 000 V 1 600 V 2 000 V 560 V / 600 V 2 500 V 1300 V 2 000 V 2 500 V 700 V 2 600 V 2 000 V 2 600 V 800 V 1 750 V 850 V / 1 000 V 3 500 V 2 000 V 2 400 V 3 500 V 4 500 V 2 500 V 3 200 V 4 500 V 1 200 V 4 600 V 3 UUU V 4 nnn v 4 600 V 1 4 N N V 5 600 V 4 000 V 5 000 V 5 600 V 2 000 V

 * Overvoltage (Withstand voltage of the related GTO) U $_{
m s}$ (U $_{
m GTO}$) 10 s by day *Surtension (Tension de tenue du GTO associable) $U_S\left(U_{GTO}\right)$ 10 s par jour

HOW TO ORDER					EXEMPLE DE CO	DIFICATION À LA COMMANDE
Model	Type of lead	UL: Flame retardant	W:RoHS	Capacitance	Capa. tolerance	Over voltage (U _{GTO})
PP 88	S	_	-	3 µF	± 5%	1500 V
Modèle	Type de sortie	UL : Auto-extinguible	W: RoHS	Capacité	Tolérance sur capacité	Surtension (U _{GTO})

PP 88 *RoHS = W*

Reference	JES AND	VATED VL		J. J PP 88							PP 88 T					V.	ALEURS I	PP 88	TE ET D	E TENSIU	IN (U _{RC})
Over voltage																					
urtension admissible (U _{GTO})			· · · ·	1500 V							2000 V							2000 V			
Voltage / Tension nominale U _{RC} / U _{RA}				0V/500							00 V / 56							000 V / 600			
Dimensions (mm) Capacitance C _R	D	R	l (Outputs /	T	ј Р	I _{RA} (1)	l2t (2)	D	R	(Outputs	T	P P	I _{RA} (1)	l²t (2)	D	R	S	s / Sorties T	, P	I _{RA} (1)	I2t (2)
0,47 μF															34	49	52		34	10	0,8
1	38	49	52		34	15	2	42	49	52		34	15	2	45	49	52		34	20	3
1,5 2	45 50	49 49	52 52		34 30	20 8	4,6	49 55	49 49	52 52		34	23 30	<u>5</u> 	53 60	49 49	52 52			30 40	7 12,7
2,5	55	49	52		35	13,5		60	49	52			40	14	66	- 73	JL	52		50	20
3	59	49	52		45	18		65			52		45	18	72			52		60	28
3,5	63	49	52		50	25		70			52		50	25	77			52		65	39
4	67			52		60	32	74			52		60	32	82			52		70	50
5	74 80			52 52		70 75	50	82			52		70	50							
6 Reference	80			PP 88 T		75	73				PP 88							PP 88			
Over voltage				1 00 1							11 00							11 00			
urtension admissible (U _{GTO})				2500 V							2500 V							2600 V			
Voltage / Tension nominale U _{RC} / U _{RA}			1300	0V/700						13	00 V / 70(V					1	750 V / 800			
0,47 μF	37	49	52		34	12	0,8	34	59	62		45	10	0,7	36	59	62		45	12	1,4
1	49	49	52		34	20	3	44	59	62		45	18	2	48	59	62		45	23	5,7
1,5 2	58 65	49	52	52		30 40	7 12,7	52 59	59 59	62 62		45	25 35	4,5 8	57 65	59 59	62 62			35 45	12,9 23
2,5	72			52		50	20	65	59	02	62		40	12,5	71	59	02	62		<u>45</u> 55	36
3	78			52		60	28	70			62		50	19	77			62		65	50
3,5	82			52		65	39	75			62		55	26	83			62		75	70
4								79			62		65	32	87			62		80	85
5															68			104		45	24
6 7,5				-			_		-				-	-	74 82			104 128		55 70	34 54
Reference			F	PP 88 T							PP 88				82			PP 88		70	54
Over voltage																					
Surtension admissible (U _{GTO})				3500 V							3500 V							4500 V			
Voltage / Tension nominale U _{RC} / U _{RA}			2000	0 V / 850	٧					200	00 V / 100	0 V						00 V / 12 00			
0,22 μF															40	59	62		45	15	1,5
0,33 0,47		-						39 45	59 59	62 62		45 45	15 18	2 4,5	47 54	59 59	62 62		45 45	19 24	3,4 7
0,47								52	59	62		45	22	9	63	59	62		43	35	14
1								62	59	62			38	15	75			62		52	30
1,25															83			62		65	50
1,5								74			62		56	40	77			62		50	40
2	70			62		45	23	84			62		75	70	87			62		75	70
2,5	78			62		55	35								75			104		45	10
3 3,5	84 84			62 78		65 75	50 70								75			104		45	18
4	87			78		80	85								86			104		60	31
5	78			104		55	31								83			128		55	27
6	84			104		65	45														
7,5	81			128		60	40				DD 00										
Reference Over voltage				PP 88 4600 V							PP 88										
Gurtension admissible (U _{GTO}) Voltage / Tension																					
nominale U _{RC} /U _{RA}	43	59	3000 62) V / 140(υν 45	15	0,8	45	75	78	00 V / 200	0 7	15	1,8							
∩ 12 / /F	55	59	62		45	20	3	58	75	78			27	6							
0,12 μF 0,22	66	59	62		45	25	6,8	69			78	40	14								
0,12 µF 0,22 0,33				62		35	13,8	80			78	57	28								
0,22 0,33 0,47	77			62		45	22													-	-
0,22 0,33 0,47 0,6	77 86			62		35	15	٥٢			10.4		CE	27							
0,22 0,33 0,47 0,6 0,68	77 86 70										104		65	37							
0,22 0,33 0,47 0,6 0,68 1	77 86 70 83			62		65 60	50 32	85 87					70	//1							
0,22 0,33 0,47 0,6 0,68 1 1,5	77 86 70 83 86			62 78		60	32	87			128		70	41				-			
0,22 0,33 0,47 0,6 0,68 1	77 86 70 83			62									70	41							
0,22 0,33 0,47 0,6 0,68 1 1,5	77 86 70 83 86 81			62 78 104		60 65	32 56						70	41							

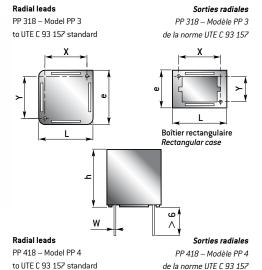
[1] I_{RA} : maximum permitted Rms current in amperes (F = 100 kHz) for a temperature of 70°C [2] I^2 t: Pulse current in A²s

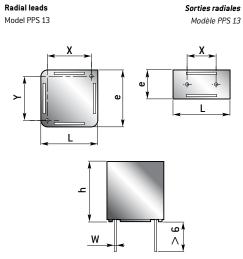
[1] I_{RA} : Courant efficace maximale admissible en ampères (F = 100 kHz) pour une température de 70°C {2} I^2 t : Courant impulsionnel en A^2 s

For intermediate value, the dimensions are those of the immediately superior value

Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure

HOW TO ORDER					EXEMPLE DE CO	DIFICATION À LA COMMANDE
Model	Type of lead	UL : Flame retardant	W:RoHS	Capacitance	Capa. tolerance	Over voltage (U _{GTO})
PP 88	T	-	-	2,5 µF	± 10%	4600 V
Modèle	Type de sortie	UL : Auto-extinguible	W : RoHS	Capacité	Tolérance sur capacité	Surtension (U _{GTO})




Sorties radiales

PPS 13 - PP 318 - PP 418

RoHS = W

DIELECTRICPolypropylene film-foil

TECHNOLOGY Non-inductive

Thermoplastic case Epoxy resin sealed

MARKING model

capacitance tolerance rated voltage date-code

DIÉLECTRIQUE Polypropylène à armatures métalliques

TECHNOLOGIE

Non inductif Boîtier thermoplastique Obturé résine époxy

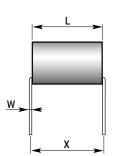
MARQUAGE

modèle capacité tolérance tension nominale date-code

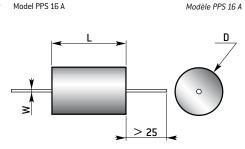
ELECTRICAL CHARACTERISTICS				CARACTÉRISTIQUES ÉLECTRIQUES
Climatic category		55/085/56		Catégorie climatique
Stability class		2		Classe de stabilité
Tg δ at 1 kHz	for $C_R \le 1000 \text{ pF}$	≤ 5.10 ⁻⁴	pour $C_R \le 1000 \text{ pF}$	Tgδà1kHz
Tg δ at 1 kHz	for C _R > 1000 pF	≤ 10.10 ⁻⁴	pour C _R > 1000 pF	Tg δ à 1 kHz
Insulation resistance		≥ 100000 MΩ		Résistance d'isolement
Test voltage		2 U _{RC}		Tension d'essai
Temperature coefficient	• PP 318 - PPS 13	-160.10 ⁻⁶ ppm/°C	• PP 318 - PPS 13	Coefficient de température
·	• PP 418	-125.10 ⁻⁶ ppm/°C	• PP 418	•

CAPACI	TANCE VAL	UES AND	RATED VO	OLTAGE (C	J.C.)				VALEURS DE CAPACITÉ ET DE TENSION (U								
Dimono	ions (mm					PP:	318		PP	S 13		PP -	418				
Dillielis	וווון פווטוו	IJ				63	3 V	63	3 V	25	0 V	63 V					
L	h	е	Х	Y	W	C _R min	C _R max	C _R min	C _R max	C _R min	C _R max	C _R min	C _R max				
13,5	7,5	5	5,08	2,54	0,6	100 pF	6490 pF					100 pF	10000 pF				
13,5	7,5	7,5	5,08	5,08	0,6	6650 pF	30100 pF					10200 pF	34800 pF				
13,5	10	10	7,62	7,62	0,6	30900 pF	59000 pF					35700 pF	68100 pF				
17,5	10,1	5,1	5,08		0,6			475 pF	4750 pF	100 pF	475 pF						
17,5	10,1	10,1	5,08	5,08	0,6			4870 pF	15000 pF	487 pF	4220 pF						
17,5	12,6	12,6	7,62	7,62	0,6			15400 pF	33200 pF	4300 pF	14700 pF						
23,5	15,2	15,2	10,16	10,16	0,8			34000 pF	0,1 μF								
23,5	20,2	20,2	15,24	15,24	0,8			0,102 μF	0,18 μF								
max	max	max	± 0,3	± 0,3	+10% - 0,05				± 20% - ± 10% - :	± 5% - ± 2% - ± 1%			-				
			n dimensi mensionn		-			Сарас		/ Tolérances sur ca							

HOW TO ORDER			EXE	MPLE DE CODIFICATION À LA COMMANDE
Model	W:RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})
PPS 13	-	10000 pF	± 10%	63 V
Modèle	W: RoHS	Capacité	Tolérance sur capacité	Tension nominale (V _{CC})



RoHS = W


PPS 16 R PPS 16 A

Sorties Axiales

Sorties radiales Axial leads
Modèle PP 16 R Model PPS 16 A

DIELECTRIC

Polypropylene film-foil

TECHNOLOGY

Non-inductive Polyester wrapped Epoxy resin sealed

OPTION

Flame retardant (UL)

MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

Polypropylène à armatures métalliques

TECHNOLOGIE

Non inductif Enrobé polyester Obturé résine époxy

OPTION

Auto-extinguible (UL)

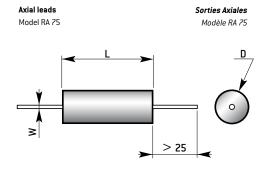
MARQUAGE

modèle capacité tolérance tension nominale date-code

ELECTRICAL CHARACTERISTICS				CARACTÉRISTIQUES ÉLECTRIQUES
Climatic category		40/085/56		Catégorie climatique
Stability class		2		Classe de stabilité
Tg δ at 1 kHz	for $C_R \leq 1000 \text{ pF}$	≤ 5.10 ⁻⁴	$pour C_R \le 1000 pF$	Tg δ à 1 kHz
Tg δ at 1 kHz	for C _R > 1000 pF	≤ 10.10-4	pour C _R > 1000 pF	Tg δ à 1 kHz
Insulation resistance		≥ 100000 MΩ		Résistance d'isolement
Test voltage		2 U _{RC}		Tension d'essai

CAPACIT	ANCE VAL	LUES AND	RATED V	OLTAGE (D.C.)							VALEURS D	E CAPACITÉ ET DE	TENSION (U _{RC})
Dimens	ions (mm	ո)						Voltage / 7	ension U _{RC}				
L	D	Х	W	63	V	10	O V	25	0 V	63	0 V	100	0 V
14	9	12,7	0,6	0,1 nF	8,2 nF	0,1 nF	2,5 nF	0,1 nF	1 nF	0,1 nF	0,5 nF	0,1 nF	0,5 nF
14	11	12,7	0,6	8,21 nF	20 nF	2,51 nF	20 nF	1,1 nF	7 nF	0,6 nF	2,5 nF	0,6 nF	1 nF
14	13	12,7	0,6	20,1 nF	35 nF								
14	15	12,7	0,6	35,1 nF	55 nF								
19	13	17,8	0,8			20,1 nF	55 nF	7,1 nF	25 nF	2,6 nF	9,5 nF	1,1 nF	4 nF
19	15	17,8	0,8	55,1 nF	85 nF								
19	17	17,8	0,8	85,1 nF	130 nF								
19	18,5	17,8	0,8	130,1 nF	180 nF								
24	15	22,9	0,8			55,1 nF	110 nF	25,1 nF	50 nF	9,6 nF	20 nF	4,1 nF	10 nF
24	18,5	22,9	0,8	180,1 nF	280 nF								
24	25	22,9	0,8	280,1 nF	350 nF								
29	17	27,9	0,8			110,1 nF	250 nF	50,1 nF	100 nF	20,1 nF	42 nF	10,1 nF	20 nF
29	21	27,9	0,8	350,1 nF	500 nF								
29	24	27,9	0,8	500,1 nF	603 nF								
34	19	33	0,8			250,1 nF	340 nF	100,1 nF	150 nF	42,1 nF	60 nF	20,1 nF	35 nF
44	19	43,5	0,8			340,1 nF	460 nF	150,1 nF	200 nF	60,1 nF	80 nF	35,1 nF	50 nF
44	21,5	43,5	0,8			460,1 nF	603 nF	200,1 nF	260 nF	80,1 nF	105 nF		
44	24	43,5	0,8					260,1 nF	350 nF	105,1 nF	145 nF		
44	27,5	43,5	0,8					350,1 nF	500 nF	145,1 nF	208 nF		
max	max	± 1	+10% - 0,05				-	± 20% - ± 10% - ±	= 5% - ± 2% - ±1	%			

Tolerances on dimensions
Tolerances dimensionns
Tolerances dimensionnelles


Capacitance tolerances / Tolerances sur capacité

HOW TO ORDER				EXEMPLE D	E CODIFICATION À LA COMMANDE
Model	UL: Flame retardant	W:RoHS	Capacitance	Capa. tolerance	Rated voltage (V_{DC})
PPS 16 R	_	-	47 nF	± 1%	100 V
Modèle	UL : Auto-extinguible	W : RoHS	Capacité	Tolérance sur capacité	Tension nominale (V_{CC})

RA 75 RoHS = W

DIELECTRIC

Metallized polypropylene + film-foil

TECHNOLOGY Self-healing, non-inductive Polyester wrapped Resin sealed

OPTION

Flame retardant (UL)

MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE Polypropylène métallisé + armatures métalliques

TECHNOLOGIE

Autocicatrisable, non inductif Enrobé polyester Obturé résine

OPTION

Auto-extinguible (UL)

MARQUAGE modèle capacité tolérance tension nominale date-code

ELECTRICAL CHARACTERISTICS				CARACTÉRISTIQUES ÉLECTRIQUES
Climatic category		40/085/56		Catégorie climatique
Performance class		1		Classe de performance
Stability class		1		Classe de stabilité
Tg δ at 1 kHz	for C _R ≤ 1μF	≤ 10.10 ⁻⁴	pour $C_R \le 1 \mu F$	Tg δ à 1 kHz
Tg δ at 100 kHz	for $C_R > 1 \mu F$	≤ 10.10 ⁻⁴	pour $C_R > 1 \mu F$	Tg δ à 100 kHz
Insulation resistance	for $C_R \leq 0.22 \mu\text{F}$	\geq 50000 M Ω	pour $C_R \le 0.22 \mu\text{F}$	Résistance d'isolement
	for $C_R > 0.22 \mu F$	\geq 10000 M Ω μ F	pour $C_R > 0.22 \mu F$	
Test voltage		2 U _{RC}		Tension d'essai

CAPACITANCE \	VALUES AND RAT	ED VOLTAGE (D.C.)		VALEU	IRS DE CAPACITÉ ET DE TENSION (U _{rc})
Dimensions (r	mm)			Voltage .	/ Tension	
L	D	w	U _{RC} 630 V U _{RA} 300 V	U _{RC} 1000 V U _{RA} 350 V	U _{RC} 1250 V U _{RA} 400 V	U _{RC} 1500 V U _{RA} 500 V
18	5	0,6	10000 pF	3300 pF	2200 pF	1000 pF
18	5	0,6		4700 pF		1500 pF
18	6	0,6	15000 pF	6800 pF	3300 pF	2200 pF
18	6	0,6		10000 pF		
27	5	0,8			4700 pF	3300 pF
27	6	0,8	22000 pF	15000 pF	6800 pF	4700 pF
27	7	0,8	33000 pF	22000 pF	10000 pF	6800 pF
27	8	0,8	47000 pF	33000 pF	15000 pF	10000 pF
32	8	1	68000 pF	47000 pF	22000 pF	15000 pF
32	10	1	0,1 μ F	68000 pF	33000 pF	22000 pF
32	12	1	0,15 <i>μ</i> F	0,1 <i>μ</i> F	47000 pF	33000 pF
32	14	1	0,22 <i>μ</i> F	0,15 μ F	68000 pF	47000 pF
32	17	1	0,33 <i>μ</i> F	0,22 μF	0,1 μ F	68000 pF
32	20	1	0,47 <i>μ</i> F	0,33 μF	0,15 <i>μ</i> F	0,1 μ F
50	20	1	0,68 μ F	0,47 μF	0,22 <i>μ</i> F	0,15 μ F
50	25	1	1 μF	0,68 μF	0,33 <i>μ</i> F	0,22 μF
60	25	1	1,5 <i>μ</i> F	1 μF	0,47 μF	0,33 <i>μ</i> F
60	30	1	2,2 μF	1,5 <i>μ</i> F	0,68 μF	0,47 <i>μ</i> F
± 2	± 2	+10% - 0,05	·	± 20% - ± 10% - =	± 5% - ± 2% - ± 1%	
	rances on dimer ances dimension			Capacitance tolerances	/ Tolérances sur capacité	

HOW TO ORDER				EXEMPLE D	E CODIFICATION À LA COMMANDE
Model	UL: Flame retardant	W: RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})
RA 75	_	-	15000 µF	± 5%	1000 V
Modèle	UL : Auto-extinguible	W : RoHS	Capacité	Tolérance sur capacité	Tension nominale (V_{CC})

RA • 1 - RA • 2

RoHS = W

Axial leads Sorties Axiales Models RA • 1 - RA • 2 Modèles RA • 1 - RA • 2 > 20

DIELECTRIC

Metallized polypropylene + film-foil

TECHNOLOGY

Self-healing, non-inductive Polyester wrapped Resin sealed

MARKING

capacitance

tolerance rated voltage

date-code

model

OPTION

Flame retardant (UL)

DIÉLECTRIQUE

Polypropylène métallisé + armatures métalliques

TECHNOLOGIE

Autocicatrisable, non inductif Enrobé polyester Obturé résine

OPTION

Auto-extinguible (UL)

MARQUAGE

modèle capacité tolérance tension nominale date-code

ELECTRICAL CHARACTERISTICS				CARACTÉRISTIQUES ÉLECTRIQUES
Climatic category		55/085/56		Catégorie climatique
Performance class		1		Classe de performance
Stability class		2		Classe de stabilité
Tg δ at 1 kHz	$for C_R \leq 1 \mu F$	≤ 5.10 ⁻⁴	pour $C_R \le 1 \mu\text{F}$	Tg δ à 1 kHz
Insulation resistance	for $C_R \leq 0.33 \mu\text{F}$	≥ 100000 MΩ	pour $C_R \le 0.33 \mu\text{F}$	Résistance d'isolement
	for $C_R > 0.33 \mu F$	≥ 30000 MΩ. µ F	pour $C_R > 0,33 \mu\text{F}$	
Test voltage		1,6 U _{RC}		Tension d'essai

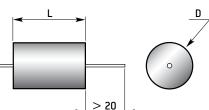
* I_{RA}: Permissible RMS current in amperes * I_{RA}: Intensité traversante admissible en ampères

		AND RATED \					'				VALEURS DE CAPACITÉ ET DE TENSION (U _{RC}) U _{RC} 1000 V - U _{RA} 425 V								
Dimension	s (mm)					U _{RC} 630 V	- U _{RA} 330 V							U _{RC} 1000 \	/ - U _{RA} 425	٧			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			RA	01	RA	11	RA	21	RA	31	RA	02	RA	12	RA	22	RA	32	
	D	W	C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA}	
20	7,5	0,8									1 nF	0,35 A							
20	7,5	0,8	3,3 nF	0,7 A							1,5 nF	0,45 A							
20	7,5	0,8	4,7 nF	0,8 A							2,2 nF	0,6 A							
20	8,75	0,8	6,8 nF	1,25 A							3,3 nF	0,9 A							
20	10	0,8	10 nF	2 A							4,7 nF	1,25 A							
20	12,5	0,8	15 nF	2,9 A							6,8 nF	1,65 A							
20	13,75	0,8									10 nF	2,5 A							
20	15	0,8	22 nF	4 A															
29	7,5	0,8			10 nF	0,76 A							3,3 nF	0,38 A					
29	7,5	0,8			15 nF	_1 A							4,7 nF	0,48 A					
29	7,5	0,8			22 5	4.6. 4							6,8 nF	0,63 A					
29	8,75	0,8			22 nF	1,6 A							10 nF	1 A					
29	10	0,8			22 5	24.4							15 nF	1,6 A					
29	12,5	0,8			33 nF	2,1 A							22 nF	2,25 A					
29	12,5	0,8			47 nF 68 nF	2,9 A							22 5	2.55.4					
29	15	0,8				4,4 A							33 nF	3,55 A					
29 29	17,5 20	0,8			0,1 μF 0,15 μF	6,3 A 8 A							47 nF 68 nF	4,7 A 6,3 A					
33	10	<u>U,8</u>			υ,15μ	8 A	22 [1 FF A					68 NF	6,3 A	10 nF	0.0.4			
33	10	1					33 nF 47 nF	2 A							15 nF	0,9 A 1,2 A			
33	10	1					47 115	<u> </u>							22 nF	1,6 A			
33	12,5	1					68 nF	2,8 A							33 nF	2,15 A			
33	15	1					0.1 <i>u</i> F	4,1 A							47 nF	3,15 A			
33	17,5	1					0,1 μF 0,15 μF	5,9 A							68 nF	4,4 A			
33	20	1					0,13 µF	10 A							0,1 µF	5,8 A			
33	25	1					U,LL MI	10 A							0.15 µF	9 A			
33	27,5	1													0,22 µF	12,5 A			
33	30	1					0.33 <i>u</i> F	12,5 A							JILLMI	11,57			
33	35	1					0,47 µF	12,5 A							0,33 μF	12,5 A			
33	35	1					0,68 µF	12,5 A							., = = ,=	,			
45	12,5	1					., ,	,_,	0,1 μF	2,8 A							47 nF	2 A	
45	15	1							0.15 µF	4,15 A							68 nF	2,75 A	
45	17,5	1							0,22 µF	5,75 A							0,1 µF	4 4	
45	20	1							0,33 µF	10 A							0,15 μF	5,9 A	
45	22,5	1															0,22 µF	8 A	
45	25	1							$0,47 \mu F$	12,5 A									
45	27,5	1							0,68 µF	12,5 A							0,33 μF	12,5 A	
45	32,5	1							1 μF	12,5 A							0,47 μF		
max	max	+10% - 0,05							. 20%	- ± 10% - :	. =0/	0/ . 40/							

Tolerances on dimensions Tolérances dimensionnelles For intermediate value, the dimensions are those of the immediately superior value

Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure

HOW TO ORDER				EXEMPLE D	E CODIFICATION À LA COMMANDE
Model	UL : Flame retardant	W:RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})
RA 11	_	-	10 µF	± 5%	630 V
Modèle	UL : Auto-extinguible	W : RoHS	Capacité	Tolérance sur capacité	Tension nominale (V_{CC})


Capacitance tolerances / Tolérances sur capacité

RA • 3 - RA • 4 RoHS = W

Axial leads Models RA • 3 - RA • 4

Sorties Axiales Modèles RA • 3 - RA • 4

DIELECTRIC

Metallized polypropylene + film-foil

TECHNOLOGY Self-healing, non-inductive Polyester wrapped Resin sealed

Flame retardant (UL)

MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

Polypropylène métallisé + armatures métalliques

TECHNOLOGIE

Autocicatrisable, non inductif

Enrobé polyester Obturé résine

OPTION

Auto-extinguible (UL)

MARQUAGE

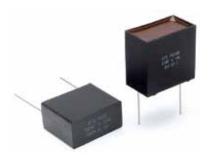
modèle capacité tolérance tension nominale date-code

non madoure		non made.		
ELECTRICAL CHARACTERISTICS				CARACTÉRISTIQUES ÉLECTRIQUES
Climatic category		55/085/56		Catégorie climatique
Performance class		1		Classe de performance
Stability class		2		Classe de stabilité
Tg δ at 1 kHz	for $C_R \le 1 \mu F$	≤ 5.10-4	pour $C_R \le 1 \mu\text{F}$	Tg δ à 1 kHz
Insulation resistance	for $C_R \le 0.33 \mu\text{F}$	≥ 100000 MΩ	pour $C_R \le 0.33 \mu\text{F}$	Résistance d'isolement
	for $C_R > 0.33 \mu\text{F}$	≥ 30000 MΩ. µ F	pour $C_R > 0.33 \mu\text{F}$	
Test voltage		1,6 U _{RC}	·	Tension d'essai

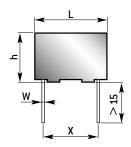
* I_{RA}: Permissible RMS current in amperes * I_{RA} : Intensité traversante admissible en ampères

CAPACITAN	CE VALUES	AND RATED \	/OLTAGE (D.	.C.)										VA	LEURS DE (CAPACITÉ E	T DE TENSI	ON (U _{RC})
					ı	U _{RC} 1600 V	- U _{RA} 500 \	/						J _{RC} 2000 V	' - U _{RA} 500	v		
Dimension	s (mm)		RA	03	RA	13	RA	23	RA	33	RA	04	RA	14	RA	24	RA	34
L	D	W	C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA}
20	7,5	0,8									100 pF	0,1 A						
20	7,5	0,8									150 pF	0,12 A						
20	7,5	0,8									220 pF	0,16 A						
20	7,5	0,8									330 pF	0,21 A						
20	7,5	0,8	680 pF	0,3 A							470 pF	0,28 A						
20	8,75	0,8	1 nF	0,5 A							680 pF	0,37 A						
20	10	0,8	1,5 nF	0,7 A							1 nF	0,5 A						
20	12,5	0,8	2,2 nF	1 A							1,5 nF	0,8 A						
20	12,5	0,8	22.5	4.6.4							2,2 nF	1,25 A						
20	13,75	0,8	3,3 nF	1,6 A							22 -							
20	15	0,8	4,7 nF	2 A	45.5	0.25 /					3,3 nF	2	600 5	0.25 :				
29	7,5	0,8			1,5 nF	0,25 A							680 pF	0,25 A				
29	7,5	0,8			2,2 nF	0,36 A							1 nF	0,23 A				
29	7,5	0,8			22.5	0.50.4							1,5 nF	0,32 A				
29	8,75	0,8			3,3 nF	0,56 A							2,2 nF	0,45 A				
29 29	10 12,5	0,8			4,7 nF	0,65 A							3,3 nF	0,75 A				
		0,8			6,8 nF 10 nF	1,1 A 1,65 A							4,7 nF 6,8 nF	1 A 1,3 A				
29 29	15 17,5	0,8			IU NF	1,65 A												
29	20	0,8											10 nF 15 nF	2 A 3 A				
33	10	1					6,8 nF	0,7 A					12 UL	_ 3 A	1 nF	0,25 A		
33	10	1					0,011	U,r A							1,5 nF	0,23 A		
33	10	1													2,2 nF	0,36 A		
33	10	1													3,3 nF	0,36 A		
33	10	1													4,7 nF	0,59 A		
33	12,5	1					10 nF	1 A							6,8 nF	0,33 A		
33	12,5	1					10 111	H							10 nF	1,25 A		
33	15	1					15 nF	1,7 A							15 nF	2 A		
33	15	1					22 nF	2,5 A							13 111			
33	17,5	1													22 nF	2,5 A		
33	20	1					33 nF	3,6 A								-10 /1		
33	22,5	1					47 nF	5 A							33 nF	4,4 A		
33	25	1													47 nF	6,3 A		
33	27,5	1					68 nF	6,6 A										
33	30	1													68 nF	8 A		
33	37,5	1													0,1 μF	12,5 A		
45	12,5	1							22 nF	1,6 A							10 nF	0,8 A
45	12,5	1															15 nF	1,25 A
45	15	1							33 nF	2,3 A							22 nF	1,8 A
45	17,5	1							47 nF	3,15 A							33 nF	2,5 A
45	22,5	1							68 nF	4,2 A							47 nF	3,8 A
45	25	1							0,1 μF	7,3 A							68 nF	5,8 A
45	30	1		·					0,15 μF	10 A							0,1 μF	8 A
45	35	1		·					0,22 µF	12,5 A							0,15 μF	12,5 A
max	max	+10% - 0,05							. 20%		- Γ 0/ - 2							

 \pm 20% - \pm 10% - \pm 5% - \pm 2% - \pm 1% Capacitance tolerances / Tolérances sur capacité Tolerances on dimensions Tolérances dimensionnelles


For intermediate value, the dimensions are those of the immediately superior value Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure

HOW TO ORDER	HOW TO ORDER EXEMPLE DE CODIFICATION À LA COMMANDE								
Model	UL : Flame retardant	W: RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})				
RA 24	_	-	6,8 µF	± 10%	2000 V				
Modèle	UL : Auto-extinguible	W : RoHS	Capacité	Tolérance sur capacité	Tension nominale (V_{CC})				



PS • 1 - PS • 2

RoHS = W

Radial leads Models PS • 1 - PS • 2

Sorties radiales Modèles PS • 1 - PS • 2

DIELECTRIC

Metallized polypropylene + film-foil

TECHNOLOGY

Self-healing, non-inductive Thermoplastic case Epoxy resin sealed

MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

Polypropylène métallisé + armatures métalliques

TECHNOLOGIE

Autocicatrisable, non inductif Boîtier thermoplastique Obturé résine époxy

MARQUAGE

modèle capacité tolérance tension nominale date-code

ELECTRICAL CHARACTERISTICS				CARACTÉRISTIQUES ÉLECTRIQUES
Climatic category		55/085/56		Catégorie climatique
Performance class		1		Classe de performance
Stability class		2		Classe de stabilité
Tg δ at 1 kHz	for $C_R \leq 1 \mu F$	≤ 5.10-4	pour $C_R \le 1 \mu F$	Tg δ à 1 kHz
Insulation resistance	for $C_R \leq 0.33 \mu\text{F}$	≥ 100000 MΩ	pour $C_R \le 0.33 \mu\text{F}$	Résistance d'isolement
	for $C_R > 0.33 \mu\text{F}$	≥ 30000 MΩ. µ F	pour $C_R > 0,33 \mu\text{F}$	
Test voltage		1,6 U _{RC}		Tension d'essai

Test voltage
* I_{RA}: Permissible RMS current in amperes

^{*} I_{RA} : Intensité traversante admissible en ampères

AI ACITAI	CE VALUES!	AND RATED \	OLIAGE (D.C	·· J									VALLUNG	DE CAI ACIT	É ET DE TEN	JI NUIC
mension	- (mm)						U _{RC} 630 V	- U _{ra} 300 V					U _{RC} 1000 V	- U _{RA} 400 V		
mension	s (mm)				PS	01	PS	11	PS	21	PS	02	PS	12	PS	22
L	h	е	Х	W	C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA}	C _R	I _R /
18,75	11,5	5	15	0,8	2,7 nF	0,8 A					1 nF	0,5 A				-
18,75	11,5	5	15	0,8	3,3 nF	0,8 A					1,2 nF	0,5 A				
18,75	11,5	5	15	0,8	3,9 nF	1 A					1,5 nF	0,63 A				
18,75	11,5	5	15	0,8	4,7 nF	1,25 A					1,8 nF	0,8 A				
18,75	14,5	5	15	0,8	5,6 nF	1,6 A					2,2 nF	1 A				
18,75	14,5	5	15	0,8	6,8 nF	2 A					2,7 nF	1,25 A				
18,75	14,5	5	15	0,8							3,3 nF	1,6 A				
18,75	14,5	6,25	15	0,8	8,2 nF	2 A					3,9 nF	1,6 A				
18,75	15,5	7,5	15	0,8	10 nF	2,5 A					4,7 nF	2 A				
18,75	15,5	7,5	15	0,8	12 nF	3,15 A					5,6 nF	2,5 A				
18,75	17,5	10	15	0,8	15 nF	4 A					6,8 nF	3,15 A				
18,75	17,5	10	15	0,8	18 nF	4 A					8,2 nF	4 A				
18,75	17,5	10	15	0,8	22 nF	5 A										
26,25	16,7	7,5	22,86	0,8			22 nF	2 A					10 nF	1,6 A		
26,25	16,7	7,5	22,86	0,8			27 nF	2,5 A					12 nF	2 A		
26,25	16,7	7,5	22,86	0,8			33 nF	3,15 A					15 nF	2,5 A		
26,25	16,7	7,5	22,86	0,8			39 nF	4 A					18 nF	3,15 A		
26,25	17,5	7,5	22,86	0,8			47 nF	5 A								
26,25	19,5	10	22,86	0,8			56 nF	5 A					22 nF	4 A		
26,25	19,5	10	22,86	0,8			68 nF	6,3 A					27 nF	4 A		
26,25	19,5	10	22,86	0,8			82 nF	6,3 A					33 nF	5 A		
26,25	21,5	12,5	22,86	0,8			0,1 μF	6,3 A					39 nF	6,3 A		
26,25	21,5	12,5	22,86	0,8			0,12 μF	6,3 A					47 nF	6,3 A		
26,25	25,5	15	22,86	0,8			0,15 μF	8 A					56 nF	6,3 A		
26,25	25,5	15	22,86	0,8			0,18 μF	10 A					68 nF	6,3 A		
26,25	29,5	17,5	22,86	0,8			0,22 μF	10 A					82 nF	6,3 A		
26,25	29,5	17,5	22,86	0,8			0,27 μF	12,5 A					0,1 <i>μ</i> F	8 A		
1,25	15	7,5	27,94	0,8					27 nF	1,6 A					12 nF	1,2
31,25	15	7,5	27,94	0,8					33 nF	2 A					15 nF	1,6
31,25	15	7,5	27,94	0,8					39 nF	2,5 A					18 nF	2
31,25	15	7,5	27,94	0,8					47 nF	2,5 A					22 nF	2,5
31,25	15	7,5	27,94	0,8					56 nF	2,5 A					27	2.4
31,25	17,5	8,75	27,94	0,8					68 nF	2,5 A					27 nF	3,1
31,25	17,5	8,75	27,94	0,8					82 nF	2,5 A					33 nF	3,1
31,25	19,5	10	27,94	0,8					0,1 μF	3,15 A					39 nF	4
31,25	19,5	10	27,94	0,8					0,12 μF	4 A 5 A					47 nF	4
31,25	22,5	12,5	27,94	0,8					0,15 μF						56 nF	4
31,25	22,5	12,5	27,94	0,8					0,18 μF	6,3 A					68 nF	4
31,25	26	15	27,94	0,8					0,22 µF	6,3 A					82 nF	<u>4</u> 5
31,25	26	15	27,94	0,8					0,27 µF	8 A					0,1 μF	
31,25 31,25	30	<u>17,5</u> 17.5	27,94	0,8					0,33 μF	10 A 12.5 A					0,12 μF	6,3
31,25	30	17,5	27,94	0,8					$0,39 \mu F$	12,5 A					0,15 μF	8

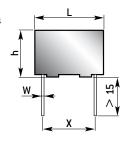
Tolerances on dimensions Tolérances dimensionnelles

Capacitance tolerances / Tolérances sur capacité

For intermediate value, the dimensions are those of the immediately superior value

Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure

HOW TO ORDER EXEMPLE DE CODIFICATION À LA COMMAI								
Model	W:RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})				
PS 21	_	82 nF	± 5%	630 V				
Modèle	W : RoHS	Capacité	Tolérance sur capacité	Tension nominale (V _{CC})				



PS • 3 - PS • 4

RoHS = W

Radial leads Models PS • 3 - PS • 4

Sorties radiales

Modèles PS • 3 - PS • 4

DIELECTRIC

Metallized polypropylene + film-foil

TECHNOLOGY

Self-healing, non-inductive Thermoplastic case Epoxy resin sealed

MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

Polypropylène métallisé + armatures métalliques

TECHNOLOGIE

Autocicatrisable, non inductif Boîtier thermoplastique Obturé résine époxy

MARQUAGE

modèle capacité tolérance tension nominale date-code

ELECTRICAL CHARACTERISTICS				CARACTÉRISTIQUES ÉLECTRIQUES
Climatic category		55/085/56		Catégorie climatique
Performance class		1		Classe de performance
Stability class		2		Classe de stabilité
_Tg δ at 1 kHz	for $C_R \le 1 \mu F$	≤ 5.10-4	pour $C_R \le 1 \mu\text{F}$	Tg δ à 1 kHz
Insulation resistance	for $C_R \le 0.33 \mu\text{F}$	≥ 100000 MΩ	pour $C_R \le 0.33 \mu\text{F}$	Résistance d'isolement
	for $C_R > 0.33 \mu\text{F}$	≥ 30000 MΩ. µ F	pour $C_R > 0.33 \mu\text{F}$	
Test voltage		1,6 U _{RC}		Tension d'essai

Test voltage
* I_{RA}: Permissible RMS current in amperes

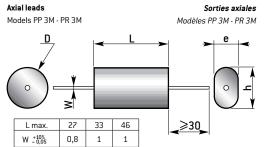
Tension d'essai * I_{RA} : Intensité traversante admissible en ampères

CAPACITAN	ICE VALUES A	AND RATED \	VOLTAGE (D.C	:.]									VALEURS	DE CAPACIT	É ET DE TEN	ISION (U _{RC})
	, ,						U _{RC} 1600 \	/ - U _{RA} 500 V					U _{RC} 2000 V	/ - U _{RA} 600 V		
Dimension	s (mm)				PS	03	PS	13	PS	23	PS	04	PS	14	PS	24
L	h	е	Х	W	C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA}	C _R	I _{RA}
18,75	14,5	5	15	0,8	1 nF	0,8 A										
18,75	14,5	5	15	0,8	1,2 nF	0,8 A										
18,75	14,5	6,25	15	0,8	1,5 nF	1 A										
18,75	14,5	6,25	15	0,8	1,8 nF	1,25 A										
18,75	15,5	7,5	15	0,8	2,2 nF	1,6 A					1 nF	1 A				
18,75	15,5	7,5	15	0,8	2,7 nF	2 A					1,2 nF	1 A				
18,75	15,5	7,5	15	0,8							1,5 nF	1,25 A				
18,75	17,5	10	15	0,8	3,3 nF	2 A					1,8 nF	1,6 A				
18,75	17,5	10	15	0,8	3,9 nF	2,5 A					2,2 nF	2A				
18,75	17,5	10	15	0,8			47.5	4.25.7			2,7 nF	2,5 A	4 5	0.4.7		
26,25	16,7	7,5	22,86	0,8			4,7 nF	1,25 A					1 nF	0,4 A		
26,25	16,7	7,5	22,86	0,8			5,6 nF	1,25 A					1,2 nF	0,4 A		
26,25	16,7	7,5	22,86	0,8			6,8 nF	1,6 A					1,5 nF	0,5 A		
26,25	16,7	7,5	22,86	0,8			8,2 nF	2 A					1,8 nF	0,63 A		
26,25	16,7	7,5	22,86	0,8									2,2 nF	0,8 A		
26,25	16,7	7,5	22,86	0,8									2,7 nF	0,8 A		
26,25 26,25	16,7 16,7	7,5	22,86	0,8									3,3 nF 3,9 nF	1 A 1.25 A		
26,25	17,5	7,5 7,5	22,86 22,86	0,8 0,8									4,7 nF	1,25 A 1,6 A		
26,25	19,5	10	22,86	0,8			10 nF	2,5 A					5,6 nF	2 A		
26,25	19,5	10	22,86	0,8			12 nF	3.15 A					6,8 nF	2 A		
26,25	19,5	10	22,86	0,8			15 nF	4 A		-			8,2 nF	2,5 A		
26,25	21.5	12.5	22,86	0,8			18 nF	4 A					10 nF	2.5 A		
26,25	21,5	12,5	22,86	0,8			22 nF	5 A					12 nF	2,5 A		
26,25	25,5	15	22,86	0,8			27 nF	5 A					15 nF	2,5 A		
26,25	25,5	15	22,86	0,8			33 nF	5 A					18 nF	3,15 A		
26,25	29,5	17,5	22,86	0,8			39 nF	5 A					22 nF	4 A		
26,25	29,5	17,5	22,86	0,8			47 nF	6,3 A					27 nF	4 A		
31,25	15	7,5	27,94	0,8				0,0 71	6,8 nF	1 A			21 111		2,7 nF	0,63 A
31,25	15	7,5	27,94	0,8					8,2 nF	1,25 A					3,3 nF	0,63 A
31,25	15	7,5	27,94	0,8					10 nF	1,6 A					3,9 nF	0,8 A
31,25	15	7,5	27,94	0,8											4,7 nF	1 A
31,25	15	7,5	27,94	0,8											5,6 nF	1,25 A
31,25	17,5	8,75	27,94	0,8					12 nF	2 A					6,8 nF	1,6 A
31,25	17,5	8,75	27,94	0,8					15 nF	2,5 A					8,2 nF	1,6 A
31,25	19,5	10	27,94	0,8					18 nF	3,15 A					10 nF	2 A
31,25	19,5	10	27,94	0,8					22 nF	3,15 A					12 nF	2 A
31,25	22,5	12,5	27,94	0,8					27 nF	4 A					15 nF	2 A
31,25	22,5	12,5	27,94	0,8					33 nF	4 A					18 nF	2 A
31,25	26	15	27,94	0,8					39 nF	4 A					22 nF	2 A
31,25	26	15	27,94	0,8					47 nF	4 A					27 nF	3,15 A
31,25	26	15	27,94	0,8					56 nF	4 A					33 nF	3,15 A
31,25	30	17,5	27,94	0,8					68 nF	5 A					39 nF	4 A
31,25	30	17,5	27,94	0,8					82 nF	6,3 A					47 nF	5 A
max	max	max	\pm 0,5	+10% - 0,05					± 20°	% - ± 10% - :	± 5% - ± 2%	- ±1%				

Tolerances on dimensions Tolérances dimensionnelles \pm 20% - \pm 10% - \pm 5% - \pm 2% - \pm 1% Capacitance tolerances / Tolérances sur capacité

For intermediate value, the dimensions are those of the immediately superior value

Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure


HOW TO ORDER EXEMPLE DE CODIFICATION À LA COMMA									
Model	W:RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})					
PS 14	-	15 nF	± 1%	2000 V					
Modèle	W : RoHS	Capacité	Tolérance sur capacité	Tension nominale (V_{CC})					

PP 3M - PR 3M

RoHS = W

Permitted pulse rise time in V/µs Variation admissible de la tension en V/µs <u>dV</u> dt							
Case length / Longueur du boîtier L							
Voltage / Tension U _{RC}	27	33	46				
2000 V	7800	3900	2200				
2500 V	2500 V 9800 4900 2800						
3500 V	14000	7300	4200				

DIELECTRIC

metallized polypropylene + double metallized foil

TECHNOLOGY self-healing, non inductive

Polyester wrapped Resin sealed Flame retardant wrapping

APPLICATIONS

AC and pulse current

MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

Polypropylène métallisé + armatures métallisées double face

TECHNOLOGIE

Autocicatrisable, non inductif

Enrobé polyester Obturé résine Enrobage auto-extinguible

APPLICATIONS

Tension alternative et impulsion de courant

MARQUAGE

modèle capacité tolérance tension nominale date-code

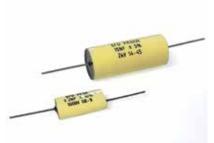
ELECTRICAL CHARACTERISTICS				CARACTÉRISTIQUES ÉLECTRIQUES
Operating temperature		-55°C +105°C		Température d'utilisation
Climatic category		55/105/56		Catégorie climatique
Dissipation factor at 1 kHz		≤ 10.10 ⁻⁴		Tangente de l'angle de pertes à 1 kHz
Insulation resistance under 500 V _{CC}	for C _R ≤ 0,33 μF	≥ 30000 MΩ	pour $C_R \le 0.33 \mu\text{F}$	Résistance d'isolement sous 500 V _{DC}
	for $C_R > 0.33 \mu\text{F}$	≥ 10000 MΩ µ F	pour C _R > 0,33 μF	
Withstand voltage		1,6 U _{RC} / 1mn		Tension de tenue
Temperature coefficient		– 250 ppm/°C		Coefficient de température
Decrease of the rated voltage U _{RC} or U _{RA} versus temperature between 85°C and 105°C		1,25 %/°C		Décroissance de la tension U _{RC} ou U _{RA} en fonction de la temp. entre 85°C et 105°C

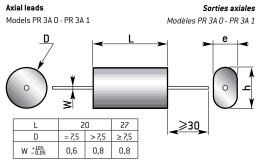
For other characteristics see page 58

Autres caractéristiques voir page 58

CAPACITANCE VALUES AND	RATED VOLTA	GE (D.C.)								VALEURS DE C	APACITÉ ET DE	TENSION (U _{RC})
					PP 3	M-1 - PR 3M-1	Lenght / Longu	eur 27 max.				
Voltage / Tension U _{RC}		200	O V _{CC}			25	00 V _{CC}			350	O V _{CC}	
Voltage / Tension U _{RA}		750	V _{CA}			10	OO V _{CA}			140	O V _{CA}	
Dimensions (mm)	D	h	е	I _{RA} *	D	h	е	I _{RA} *	D	h	е	I _{RA} *
Capacité C _R												
1 nF	7,5	10	5	0,2	7,5	10	5	0,3	10	12	8	0,4
1,5	7,5	10	5	0,3	8,7	12	7	0,4	12	14	10	0,6
2,2	8,7	12	7	0,5	10	12	8	0,6	12,5	15	10	0,9
3,3	10	12	8	0,7	12	15	10	0,9	15	18	12	1,4
4,7	12	15	9	1	14	16	11	1,3	19	21	16	22
6,8	14	17	11	1,5	16	18	13	1,9				
10 15	16 18	20 22	13 16	2,2 3,3	18	21	16	2,8				
15	18	22	16	3,3	DD 2	M 2 DD 2M 2	Lenght / Longu					
0.0.5					PP 3	M-2 - PK 3M-2	Lengnt / Longu	leur 33 max.	4.0	40		0.5
2,2 nF									10 12	13 14	<u>8</u>	<u>0,5</u> 0,7
3,3	10	12	7	0,5	10	13	8	0.7	13	14 16	<u>9</u> 11	<u>U,/</u>
<u>4,7</u> 6,8	10,5	<u>12</u> 	8	0,5	12	15	10	0,7	13 16	18	13	1,4
10	12	15	<u>8</u> 	1.1	14	15 17	12	1.4	18	22	15	2.1
15	14	17	12	1.7	17	19	14	2.1	22	26	19	3.1
22	16	20	15	2,4	20	22	17	3.1	26	31	21	4,6
33	20	23	17	3,7	23	26	20	4,6	31	36	26	6,9
47	23	26	20	5,2	27	30	23	6,5	37	44	31	9,8
68	27	30	25	7,5	32	34	29	9,4				
0,1 μF	32	35	30	11,1								
					PP 3	M-3 - PR 3M-3	Lenght / Longu	ieur 46 max.				
6,8 nF									14	16	11	0,6
10									16	18	13	1
15	11,5	14	9	1	13	16	11	1,2	19	21	15	1,4
22	13,5	17	11	1,4	16	18	13	1,7	22	24	18	2,1
33	16	19	13	2,1	18	21	16	2,6	26	30	20	3,1
47	19	21	16	3	22	24	19	3,7	30	34	24	4,5
68	22	24	19	4,3	25	27	22	5,4	35	39	30	6,5
<u>0,1μ</u> F	25	28	22	6,3	30	32	27	7,9				
0,15	30 35	33	27 32	9,5	35	37	32	11,9				
0,22 Tolerances on dimensions Tolérances dimensionnelles	max	38 max	max	12	max	max	max		max	max	max	

Capacitance tolerances / Tolérances sur capacité \pm 20% - \pm 10% - \pm 5% For intermediate value, the dimensions are those of the immediately superior value $*I_{RA}$: Permitted Rms current in amperes at 70°C (F= 1 MHz)


Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure $*I_{RA}: Courant efficace admissible en ampères à 70°C (F= 1 MHz)$


HOW TO ORDER EXEMPLE DE CODIFICATION À LA COMMANDE								
Model	UL : Flame retardant	W:RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})			
PP 3M-1	_	-	10 nF	± 20%	2500 V			
Modèle	UL : Auto-extinguible	W : RoHS	Capacité	Tolérance sur capacité	Tension nominale (V _{CC})			

PP 3A - PR 3A

RoHS = W

Permitted pulse rise time in V/μs Variation admissible de la tension en V/μs <u>dV</u> dt								
Case length / Longueur du boîtier L								
Voltage / Tension U _{RC} 20 27								
630 V	2400	2000						
1000 V	3600	3000						
1600 V	7400	6400						
2000 V	10000	10000						
2500 V 10000 10000								
3500 V	3500 V 10000 10000							

DIELECTRIC

metallized polypropylene

TECHNOLOGY self-healing, non inductive

Resin sealed OPTIONAL FEATURE Flame retardant (as per classification UL VO)

Polyester wrapped

MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

Polypropylène métallisé + armatures

TECHNOLOGIE

Autocicatrisable, non inductif Enrobé polyester

Obturé résine

APPLICATIONS Auto-extinguible (suivant classification UL VO)

MARQUAGE

modèle capacité tolérance tension nominale date-code

ELECTRICAL CHARACTERISTICS				CARACTÉRISTIQUES ÉLECTRIQUES
Operating temperature		-40°C +85°C		Température d'utilisation
Dissipation factor at 1 kHz		≤ 10.10 ⁻⁴		Tangente de l'angle de pertes à 1 kHz
Insulation resistance	for C _R ≤ 330 nF	≥ 100000 MΩ	pour $C_R \le 330 \text{ nF}$	Résistance d'isolement
	for C _R > 330 nF	≥ 30000 MΩ µ F	pour C _R > 330 nF	
Withstand voltage		1,6 U _{RC} / 1mn		Tension de tenue
Temperature coefficient		– 250 ppm/ °C		Coefficient de température

For other characteristics see page 58

Autres caractéristiques voir page 58

CAPACITANCE VALUES AND	RATED	VOLTAG	GE (D.C	.]															VALEUR	S DE CA	PACITÉ	ET DE 1	TENSION	I (U _{RC})
									PP	3A 0 -	PR 3A 0	Lenght	/ Long	ueur 20	mm m	ax.								
Voltage / Tension U _{RC}		630	V _{CC}			100	O V _{CC}			160	O V _{CC}			200	O V _{CC}			250	O V _{CC}			350	O V _{CC}	
Voltage / Tension U _{RA}		330) V _{CA}			425	V _{CA}			500) V _{CA}			550	V _{CA} **			600	V _{CA} **			800	V _{CA} **	
Dimensions (mm)	D	h	е	I _{RA} *	D	h	е	I _{RA} *	D	h	е	I _{RA} *	D	h	е	I _{RA} *	D	h	е	I _{RA} *	D	h	е	I _{RA} *
Capacité C _R																								
680 pF									7,5	10	5	0,3												
1 nF					7,5	10	5	0,4	8,7	12	7	0,5	10	13	8	0,6								
1,5					7,5	10	5	0,5	10	13	8	0,6	12,5	15	10	0,8								
2,2					7,5	10	5	0.6	12.5	15	10	1	13.7	16	10	0,8								
3,3	7.5	10	5	0.6	8.7	12	7	0.8	13.7	16	11	1.5	15	18	12	1.5								
4,7	7,5	10	5	0.8	10	13	8	1,2	15	18	12	2												
6,8	8,7	12	7	1,2	12,5	15	10	2,5																
10	10	13	8	2	13,7	16	11	2,8																
15	12,5	15	10	2,5																				
22	15	18	12	4																				
									PP	3A 1 -	PR 3A 1	Lenght	/ Long	ueur 27	mm m	ax.								
1 nF													7,5	10	5	0,3	7,5	10	5	0,4	10	12	8	0,6
1,5													7,5	10	5	0,3	8,7	12	7	0,4				
2,2									7,5	10	5	0,4	8,7	12	7	0,4	10	12	8	0,5	12,5	15	10	0,7
3,3					7,5	10	5	0,5	8,7	12	7	0,5	10	12	8	0,6	12,5	15	10	0,7	15	18	12	0,9
4,7					7,5	10	5	0,6	10	12	8	0,8	12,5	15	10	1,2	15	18	12	1,5	20	25	17	1,7
6,8					7,5	10	5	0,6	12,5	15	10	1,2	15	18	12	1,5	18	22	13	2				
10	7,5	10	5	0,7	8,7	12	7	1	15	18	12	2	18	22	15	3,5	20	25	17	2,2				
15	7,5	10	5	1	10	12	8	1,5	18	22	15	3	20	25	17	3,5								
22	8,7	12	7	1,6	12,5	15	10	2																
33	12,5	15	10	2,3	15	18	12	3																
47	12,5	15	12	3,5	18	22	15	5																
68	15	18	15	4,5	20	25	17	6,5																
100	18	22	18	6,5																				
olerances on dimensions	max	max	max		max	max	max		max	max	max		max	max	max		max	max	max		max	max	max	

Capacitance tolerances / Tolérances sur capacité \pm 20% - \pm 10% - \pm 5%

For intermediate value, the dimensions are those of the immediately superior value

Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure

* I_{RA}: Courant efficace admissible en ampères à 30 kHz

** Utilisation en alternatif: Température maximale 55°C

 $^*\,I_{RA}$: Rms current in amperes at 30 kHz ** A.C. application : max. temperature 55°C

	HOW TO ORDER				EXEMPLE D	E CODIFICATION A LA COMMANDE
	Model	UL: Flame retardant	W: RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})
ĺ	PP 3A 1	-	-	22 nF	± 10%	1000 V
	Modèle	UL : Auto-extinguible	W : RoHS	Capacité	Tolérance sur capacité	Tension nominale (V _{CC})

PP 3A - PR 3A

RoHS = W

Axial leads Sorties axiales Models PR 3A 2 - PR 3A 3 Modèles PR 3A 2 - PR 3A 3 33 46 <u>≥30</u> W ⁺¹⁰% -0,05 0,8 1

Permitted pulse rise time in V/µs Variation admissible de la tension en V/µs <u>dV</u> dt										
Case length / Lo	Case length / Longueur du boîtier L									
Voltage / Tension U _{RC}	33	46								
630 V	1700	1300								
1000 V	2300	2000								
1600 V	4300	3400								
2000 V	6700	3800								
2500 V	2500 V 6700 3800									
3500 V 6700 3800										

DIELECTRIC

metallized polypropylene + foil

For other characteristics see page 58

TECHNOLOGY

self-healing, non inductive

Polyester wrapped Resin sealed

OPTIONAL FEATURE

Flame retardant (as per classification UL VO)

MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

Polypropylène métallisé + armatures

TECHNOLOGIE

Autocicatrisable, non inductif Enrobé polyester Obturé résine

APPLICATIONS

Auto-extinguible (suivant classification UL VO)

MARQUAGE

modèle capacité tolérance tension nominale date-code

Autres caractéristiques voir page 58

		Σσ2σ ρο	.900.0.	
ELECTRICAL CHARACTERISTICS				CARACTÉRISTIQUES ÉLECTRIQUES
Operating temperature		-40°C +85°C		Température d'utilisation
Dissipation factor at 1 kHz		≤ 10.10·4		Tangente de l'angle de pertes à 1 kHz
Insulation resistance	for C _R ≤ 330 nF	≥ 100000 MΩ	$pour C_R \le 330 \text{ nF}$	Résistance d'isolement
	for $C_R > 330 \text{ nF}$	≥ 30000 MΩ μ F	pour $C_R > 330 \text{ nF}$	
Withstand voltage		1,6 U _{RC} / 1mn		Tension de tenue
Temperature coefficient		– 250 ppm/ °C		Coefficient de température

									PP	3A 2 - I	PR 3A 2	Lenght	/ Long	ueur 33	mm m	ax.								
oltage / <i>Tension</i> U _{RC}		630) V _{cc}			100	0 V _{CC}				D V _{CC}				O V _{CC}			250	O V _{CC}			350	O Vec	
oltage / Tension U _{RA}		330					V _{CA}		500 V _{CA}			550 V _{CA} **			600 V _{CA} **				800 V _{CA} **					
Dimensions (mm)	D	h	e	I _{RA} *	D	h	e	I _{RA} *	D	h	е	I _{RA} *	D	h	е	I _{RA} *	D	h	e	I _{RA} *	D	h	e	
Capacité C _R				NA				NA				NA .				NA .				I NA				
1 nF													10	13	8	0.2								-
1,5													10	13	8	0.3								
2.2													10	13	- 8	0.4					10	13	8	
3,3													10	13	8	0,5					11	14	9	
4,7													10	13	8	0,6	10	13	8	0,8	12,5	15	10	
6,8									10	13	- 8	0,9	12,5	15	10	0,8	12,5	15	10	1	15	18	12	
10					10	13	8	0,8	12	15	_10	1	12,5	15	10	1,3	15	18	12	1,5	17,5	22	15	
15					10	13	8	1	15	18	12	1,5	15	18	12	2	17,5	22	15	2	22	27	19	
22					10	13	8	1,5	17,5	18	12	2,6	17,5	22	15	2,6	22	27	19	2,8	25	30	20	
33	10	13	8	1,8	12,5	15	10	3	20	25	17	3,2	22	27	19	4,3	25	30	20	4,5	30	35	25	
47	10	13	8	2	15	18	12	4	22	27	19	<u>5,5</u>	25	30	20	6,5	30	35	25	7,5	37,5	45	32	
68	12,5	15	10	3,2	17,5	22	15	4,5	27,5	32	22	8	30	35	25	88	37,5	45	32	8				
100	15	18	12	4	20	25	17	6,5	35	32	30	11	37,5	45	32	13								_
150	17,5	22	15	6,5	22	27	19	8																_
220 330	20 25	25 30	17 20	10 12	25 35	30 42	20 30	13 13																_
470	30	35	25	13	35	42		13																-
680	35	42	30	13																				-
000	JJ	42	30	13					PP	3A 3 - F	PR 3A 3	l enght	/ Long	ueur 46	mm m	ay								
10 nF													12,5	16	10	1					15	18	12	
15													12,5	16	10	1,5	15	18	12	1,8	17.5	22	15	Т
22									12,5	16	10	1,5	15	18	12	1.7	17,5	22	15	2	22,5	28	18	Т
33									15	18	12	2,2	17,5	22	15	2,4	22,5	28	18	2,6	25	30	20	Т
47					12,5	16	10	2	17,5	22	15	3	22,5	28	18	4,5	25	30	20	6	30	35	25	
68					15	18	12	2,8	22,5	28	18	5	25	30	20	5,5	30	35	25	8				
100	12,5	16	10	2,5	17,5	22	15	4,5	25	30	20	6,5	30	35	25	10								
150	15	18	12	4	20	25	17	8	30	35	25	12	35	40	29	15								
220	17,5	22	15	6,5	22,5	28	18	10	35	40	29	15												
330	20	25	17	8	27,5	32	22	15																
470	25	30	20	13	32,5	38	27	15																_
680	27,5	32	22	13																				_
1 μF	35	40	29	15																				_
rances on dimensions rances dimensionnelles	max	max	max		max	max	max		max	max	max		max	max	max		max	max	max		max	max	max	
									ces / To	lérance	s sur ca	pacité						· · · • · · ·	I I				(1)	_
intermediate value, the			re thos	e of the	immed	iately s	uperior	value					ı	oute vai	eur intei	mediair					ons de la issible e		sup	oér

HOW TO ORDER				EXEMPLE D	E CODIFICATION À LA COMMANDE
Model	UL : Flame retardant	W: RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})
PP 3A 2	-	-	330 nF	± 10%	1000 V
Modèle	UL : Auto-extinguible	W : RoHS	Capacité	Tolérance sur capacité	Tension nominale (V_{CC})

PRAHT RoHS = W

Permitted pulse rise time in V/µs Variation admissible de la tension en V/µs											
Voltage / Tension U _{RC}	U _{RC} L max. dv/dt										
1000 V	35 45	110 68									
2000 V	35 45	500 300									
4000 V	35 45	2800 1600									
6000 V	50	4300									
8000 V	58	6900									
10000 V	58	8500									
15000 V	58	7000									
20000 V	70	10000									

DIELECTRIC

metallized Polypropylene

TECHNOLOGY

self-healing, non inductive Polyester wrapped Resin sealed

Flame retardant wrapping

OPTIONAL FEATURE For application in oil Ref. : PRA HT H L, D dimensions are increased by 2 mm

MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

Polypropylène métallisé

TECHNOLOGIEAutocicatrisable, non inductif Enrobé polyester Obturé résine

Enrobage auto-extinguible

OPTION

Pour utilisation dans l'huile Réf.: PRA HT H Les dimensions L, D sont augmentées de 2 mm

MARQUAGE

modèle capacité tolérance tension nominale date-code

ELECTRICAL CHARACTERISTICS				CARACTÉRISTIQUES ÉLECTRIQUES
Operating temperature		-55°C +85°C		Température d'utilisation
Dissipation factor at 1 kHz		≤ 10.10-4		Tangente de l'angle de pertes à 1 kHz
Insulation resistance under 500 V _{CC}	for C _R ≤ 330 nF	≥ 30000 MΩ	$pour C_R \le 330 \text{ nF}$	Résistance d'isolement sous 500 V _{DC}
	for C _R > 330 nF	≥ 10000 MΩ µ F	pour C _R > 330 nF	
Withstand voltage	≤ 1 kV	1,5 U _{RC} / 1mn	≤ 1 kV	Tension de tenue
	> 1 kV	1,2 U _{RC} / 1mn	> 1 kV	

For other characteristics see page 58 Autres caractéristiques voir page 58

CAPACITANCE VALUES AND					20001			10001			20001			20001			20001				PACITÉ			· nos
Voltage / Tension U _{RC}		1000 V			2000 V	-		4000 V ₀			5000 V ₀			3000 V	-	_	0000 V			5000 V			0000 V	
Voltage / Tension U _{RA}		250 V _C			500 V _C		:	1000 V ₀	<u> </u>		1500 V _C	~	i	2000 V	-	i	2400 V _C	<u> </u>		3300 V			4000 V	-
Dimensions (mm)	D	L	I _{RA} *	D	L	I _{RA} *	D	L	I _{RA} *	D	L	I _{RA} *	D	L	I _{RA} *	D	L	I _{RA} *	D	L	I _{RA} *	D	L	I _{RA} *
Capacité C _R																								
1 nF																8	58	0,18	10	58	0,15	11	70	0,23
1,5													8	58	0,22	9	58	0,27	12	58	0,23	13	70	0,34
2,2										8	50	0,2	9	58	0,32	10	58	0,4	13	58	0,33	15	70	0,5
3,3							8	35	0,2	9	50	0,3	10	58	0,48	12	58	0,6	15	58	0,5	17	70	0,75
4,7							9	35	0,29	10	50	0,4	12	58	0,69	14	58	0,86	18	58	0,7	20	70	1
6,8			_				10	35	0,4	11	50	0,6	14	58	1	16	58	1,2	21	58	1	23	70	1,5
10							11	35	0,6	13	50	0,9	16	58	1,4	19	58	1,8	25	58	1,5	27	70	2,2
15							13	35	0,9	15	50	1,3	18	58	2,1	22	58	2,7	30	58	2,2	33	70	3,4
22				8	35	0,24	12	45	0,77	17	50	2	21	58	3,2	26	58	4	35	58	3,3	39	70	5
33				9	35	0,35	14	45	1,1	21	50	3	25	58	4,8	31	58	6	42	58	5			
47	8	35	0,17	10	35	0,51	16	45	1,6	24	50	4,3	29	58	6,8	36	58	8,5						
68	8	35	0,2	12	35	0,73	19	45	2,3	29	50	6,2	35	58	9,9	42	58	12						
0,1 <i>µ</i> F	8	35	0,24	11	45	0,65	22	45	3,4	34	50	9,1	41	58	12									
0,15	9	35	0,36	13	45	0,98	26	45	5,2	40	50	12												
0,22	10	35	0,52	16	45	1,4	31	45	7,6															
0,33	12	35	0,79	18	45	2,1	37	45	11															
0,47	12	45	0,67	21	45	3	43	45	12															
0,68	13	45	0,97	24	45	4,4																		
1	15	45	1,4	29	45	6,5																		
1,5	18	45	2,1	35	45	9,7																		
2,2	22	45	3,1	41	45	12																		
3,3	25	45	4,7																					
4,7	30	45	6,7																					
6,8	35	45	9,7																					
10	41	45	12																					
Tolerances on dimensions Tolérances dimensionnelles	max	max		max	max		max	max		max	max		max	max		max	max		max	max		max	max	

Capacitance tolerances / Tolérances sur capacité \pm 20% - \pm 10% - \pm 5%

For intermediate value, the dimensions are those of the immediately superior value

Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure * I_{RA} : Courant efficace admissible à 70°C (F = 100 kHz)

* I_{RA} : Permitted RMS current at 70°C (F = 100 kHz)

HOW TO ORDER				EXEMPLE D	E CODIFICATION À LA COMMANDE
Model	UL: Flame retardant	W: RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})
PRA HT	-	_	22 nF	± 10%	6000 V
Modèle	UL : Auto-extinguible	W: RoHS	Capacité	Tolérance sur capacité	Tension nominale (V _{CC})

90 www.exxelia.com - info@exxelia.com Tel:+33 (0)1 49 23 10 00 Page revised - Version 04/15

SUMMARY *SOMMAIRE*

General information on polystyrene capacitors93	Généralités sur les condensateurs polystyrène9
Polystyrene capacitors data sheets94	Feuilles particulières sur les condensateurs polystyrène9

LIST OF POLYSTYRENE CAPACITORS			RÉPERTOIRE DES CONDENSATEURS	POLYSTYRÈNE
Commercial type Appellation commerciale	Standard reference Modèle normalisé	Capacitance Capacité	Rated voltage U _{RC} Tension nominale U _{RC}	Page Page
PLS 3		100 pF - 180 nF	$63V_{CC}$ - $250V_{CC}$	94
PLS 5		909 pF - 1 μF	63 V _{CC} - 400 V _{CC}	95
PLS 7		100 pF - 32,4 nF	100 V _{CC}	96
PLS 8		10 pF - 34 nF	63 V _{CC}	96

GENERAL INFORMATION GÉNÉRALIITÉS

POLYSTYRENE FILM-FOIL CAPACITORS

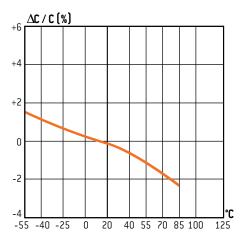
The principle features of polystyrene capacitors are low dielectric losses low dielectric absorption, a very good stability over time and a low negative temperature coefficient. These characteristics make it particularly suitable for "time constant" and "filter" applications.

CAPACITOR PERFORMANCE versus TEMPERATURE

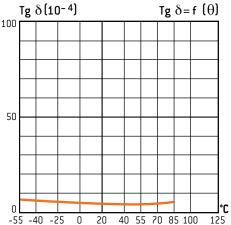
The capacitor performance vs. temperature depends essentially upon the dielectric type.

Important differences affect the laws governing the changes of the main electrical characteristics. They are highlighted by the following curves :

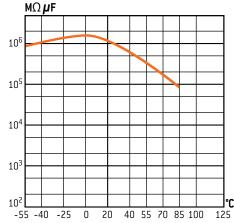
CONDENSATEURS POLYSTYRÈNE À ARMATURES


Les condensateurs au polystyrène sont caractérisés par d'excellentes propriétés : tangente de l'angle de pertes, absorption diélectrique, coefficient de température, stabilité à long terme.

Ces caractéristiques les destinent plus particulièrement aux applications "constante de temps" et "filtres".

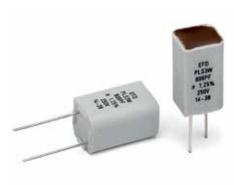

COMPORTEMENT DES CONDENSATEURS EN FONCTION DE LA TEMPÉRATURE

Le comportement des condensateurs en fonction de la température dépend essentiellement de la nature du diélectrique.


Des différences importantes affectent les lois de variations des principaux paramètres électriques. Elles sont mises en évidence dans les courbes suivantes :

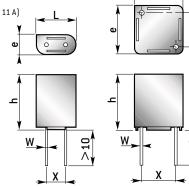
Capacitance change versus temperature Variation de la capacité en fonction de la température

Tangent of loss angle change versus temperature Variation de la tangente de l'angle de pertes en fonction de la température.



Insulation resistance change versus temperature Variation de la résistance d'isolement en fonction de la température.

PLS₃


RoHS = W

Radial leads

Model PLS 3

(model CPS 3 according to CCTU 02 11 A) The angle of the case identifies the outer foil

Sorties radiales

Modèle PLS 3

(modèle CPS 3 de la norme CCTU 02 11 A) L'angle saillant du boîtier repère l'armature extérieure

DIELECTRICPolystyrene + foil

TECHNOLOGY Non inductive

Plastic case Epoxy resin sealed

MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

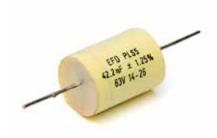
Polystyrène et armatures débordantes

TECHNOLOGIENon inductif

Boîtier plastique Obturé résine époxy

MARQUAGE modèle capacité tolérance tension nominale date-code

GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Operating temperature		− 55°C + 85°C		Température d'utilisation
Dissipation factor	• for C _R > 1000 pF at 1 kHz	≤ 5.10 ⁻⁴	à 1 kHz • pour C _R > 1000 pF	Tangente de l'angle de pertes
	• for C _R ≤ 1000 pF at 1 MHz	≤ 10.10-4	à 1 MHz • pour $C_R \le 1000 pF$	
Insulation resistance		100000 MΩ		Résistance d'isolement
Withstand voltage		2,5 U _{RC}		Tension de tenue
Temperature coefficient	• for C _R ≤ 499 pF	- 80±70 ppm/°C	• pour C _R ≤ 499 pF	Coefficient de température
	• for C _R ≥ 510 pF	− 120 ± 50 ppm/°C	• pour $C_R \ge 510 pF$	
Capacitance drift after 1 thermal cycle		± (0,3 % + 0,3 pF)		Dérive de capacité après 1 cycle thermique
Stability class	• for case A	2	• pour boîtier A	Classe de stabilité
	for other cases	3	• pour autres boîtiers	

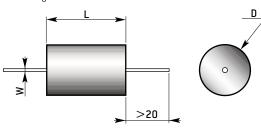

For other characteristics, see page XX

Autres caractéristiques voir page XX

CAPACITANO	E VALUES AND	RATED VOLTA	GE (D.C.)					VALEURS DE C	APACITE ET DE TENSION (U _{RC})		
				Voltage	/ Tension U _{RC}	62)	,	250 V _{CC}			
Dimensions	(mm)					631	CC C				
	h	е	X	W	Boîtier	C _R min	C _R max	C _R min	C _R max		
10,1	17,5	5,1	5,08	0,6	А	510 pF	4 700 pF	100 pF	499 pF		
10,1	17,5	10,1	5,08	0,6	В	4 750 pF	15 nF	510 pF	3,9 nF		
12,6	17,5	12,6	7,62	0,6	С	15,4 nF	34,8 nF	3,92 nF	13,3 nF		
15,2	23,5	15,2	10,16	0,8	D	35,7 nF	100 nF	13,7 nF	32,4 nF		
20,2	23,5	20,2	15,24	0,8	E	102 nF	180 nF	33,2 nF	49,9 nF		
max	max	max			+10% - 0,05	± 5% · ± 2,5% · ± 1,25%					
		Tolerances di Tolérances di	n dimensions mensionnelles	;		Capacitance tolerances / <i>Tolérances sur capacité</i>					

HOW TO ORDER												
Model	Case	W: if complient RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})							
PLS 3	A	-	43 nF	± 5%	250 V							
Modèle	Boïtier	W : si conforme RoHS	Capacité	Tol. sur capa.	Tension nom. (V_{CC})							

PLS 5 RoHS = W


DIELECTRIC Polystyrene + foil TECHNOLOGY Non inductive Polyester wrapped Epoxy resin sealed

Axial leads Model PLS 5

MARKING

(model CPS 5 according to CCTU 02 11 A) The outer foil is to the left of the marking

Sorties axiales Modèle PLS 5 (modèle CPS 5 de la norme CCTU 02 11 A) L'armature extérieure est à gauche du marquage

DIÉLECTRIQUE

model capacitance tolerance rated voltage date-code

TECHNOLOGIENon inductif Polystyrène et armatures débordantes

Enrobé polyester Obturé résine époxy

MARQUAGE modèle

capacité tolérance tension nominale date-code

GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Operating temperature		− 55°C + 85°C		Température d'utilisation
Dissipation factor at 1 kHz		≤ 5.10 ⁻⁴		Tangente de l'angle de pertes à 1 kHz
Insulation resistance		100000 MΩ		Résistance d'isolement
Withstand voltage		2,5 U _{RC}		Tension de tenue
Temperature coefficient	• for C _R < 4700 pF	– 100±70 ppm/°C	• pour C _R < 4700 pF	Coefficient de température
	• for C _R ≥ 4700 pF	– 100 ± 50 ppm/°C	• pour $C_R \ge 4700 \text{ pF}$	
Capacitance drift after 1 thermal cycle	• for C _R < 4700 pF	± (0,5 % + 0,5 pF)	• pour C _R < 4700 pF	Dérive de capacité après 1 cycle thermique
	• for C _R ≥ 4700 pF	± (0,3 % + 0,3 pF)	• pour C _R ≥ 4700 pF	
Stability class	• for C _R < 4700 pF	2	• pour C _R < 4700 pF	Classe de stabilité
	 for C_R ≥ 4700 pF 	3	 pour C_R ≥ 4700 pF 	

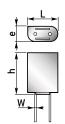
For other characteristics, see page XX

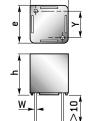
Autres caractéristiques voir page XX

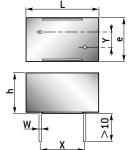
CAPACITANO	CE VALUES AND	RATED VOLTA	GE (D.C.)				VALEURS DE CAPA	CITE ET DE TENSION (U_{RC})					
	Voltage /	Tension U _{RC}											
Dimension	s (mm)		6:	3 V _{CC}	250) V _{cc}	400 V _{cc}						
L	D	W	C _R min	C _R max	C _R min	C _R max	C _R min	C _R max					
21	7	0,8	1000 pF	6 810 pF	909 pF	2 490 pF							
21	8	0,8	6 980 pF	13 300 pF	2 550 pF	4 420 pF							
21	10	0,8	13 700 pF	28 000 pF	4 530 pF	6 980 pF							
21	12	0,8	28 700 pF	39 200 pF	7 150 pF	9 530 pF							
27	8	0,8					1 210 pF	2 100 pF					
27	10	0,8					2 150 pF	3 320 pF					
27	12	0,8	40 200 pF	54 900 pF	9 760 pF	13 000 pF	3 400 pF	4 420 pF					
27	14	1	56 000 pF	80 600 pF	13 300 pF	19 600 pF	4 530 pF	6 490 pF					
27	16	1	82 000 pF	0,105 μF	20 000 pF	25 500 pF	6 650 pF	8 450 pF					
27	18	1	0,107 μF	0,165 μF	26 100 pF	32 400 pF	8 660 pF	10 700 pF					
34	14	1			33 000 pF	46 400 pF	11 000 pF	16 900 pF					
34	16	1			47 000 pF	62 000 pF	17 400 pF	22 100 pF					
34	18	1	0,169 μF	0,21 μF	63 400 pF	78 700 pF	22 600 pF	28 000 pF					
34	20	1	0,215 μF	0,261 μF	80 600 pF	95 300 pF	28 700 pF	34 800 pF					
34	22	1	0,267 μF	0,309 μF	97 600 pF	0,113 <i>μ</i> F	35 700 pF	41 200 pF					
34	24	1	0,316 μF	0,422 μF	0,12 μF	0,174 μF	42 200 pF	49 900 pF					
53	18	1					51 000 pF	63 400 pF					
53	20	1	0,43 μF	0,536 μF	0,178 μF	0,221 μF	64 900 pF	78 700 pF					
53	22	1	0,549 μF	0,665 μF	0,226 μF	0,267 μF	80 600 pF	95 300 pF					
53	24	1	0,68 μF	0,806 μF	0,27 μF	0,316 μF	97 600 pF	0,113 μF					
53	26	1	0,82 μF	0,931 μF	0,324 μF	0,374 μF	0,115 μF	0,137 μF					
53	28	1	0,953 μF	1 μF	0,383 μF	0,392 μF	0,14 μF	0,162 μF					
max	max ances on dime	+10% - 0,05		± 5% - ± 2,5% - ± 1,25%									
	nces dimensio				Lapacitance tolerances	/ Tolérances sur capacité							

HOW TO ORDER EXEMPLE DE CODIFICATION À LA COMM										
Model	W: if complient RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})						
PLS 5	-	0,12 μF	± 5%	250 V						
Modèle	W : si conforme RoHS	Capacité	Tol. sur capa.	Tension nom. (V _{CC})						

POLYSTYRENE CAPACITORS CONDENSATEURS POLYSTYRÈNE

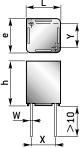

PLS 7 - PLS 8


RoHS = W


The outer foil is to the left of the marking L'armature extérieure est à gauche du marquage

Radial leads Sorties radiales

PLS 7 (according to CCTU 02 11 A) (modèle CPS 7 de la norme CCTU 02 11 A)



PLS 8 (according to EN 130 900) (modèle CPS 8 de la norme EN 130 900)

Radial leads Sorties radiales

DIELECTRICPolystyrene + foil

TECHNOLOGYNon inductive Plastic case Epoxy resin sealed

MARKING Model

Case (PLS 8)
Capacitance - Tolerance Rated voltage Date - Code

DIÉLECTRIQUE Polystyrène et armatures débordantes

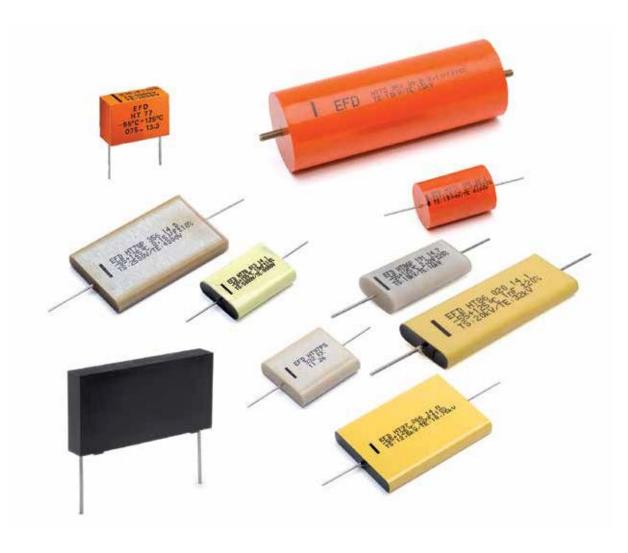
TECHNOLOGIENon inductif
Boîtier plastique
Obturé résine époxy

MARQUAGE Modèle Boîtier (PLS 8) Capacité - Tolérance Tension nominale Date - Code

GENERAL CHARACTERISTICS	S				CA	ARACTÉRISTIQUES GÉNÉRALES
Operating temperature			− 55°C + 85°C			Température d'utilisation
Dissipation factor		• for C _R > 1000 pF at 1 kHz	≤ 5.10 ⁻⁴	à 1 kHz • pour C _R > 1000 pF		Tangente de l'angle de pertes
		• for $C_R \le 1000 \text{ pF}$ at 1 MHz	≤ 10.10 ⁻⁴	à 1 MHz • pour $C_R \le 1000 pF$		
Insulation resistance			100000 MΩ			Résistance d'isolement
Withstand voltage			2,5 U _{RC}			Tension de tenue
T	PLS 7 —	• for C _R ≤ 499 pF	− 80 ± 70 ppm/°C			Castiniant da tamanématura
Temperature coefficient		• for C _R ≥ 510 pF	– 120±50 ppm/°C			Coefficient de température
	PLS 8 —	• for C _R ≤ 1000 pF	– 100±70 ppm/°C	• pour C _R ≤ 1000 pF	DI C O	
	PLS 8 -	• for C _R > 1000 pF	– 125±60 ppm/°C	• pour C _R > 1000 pF	• pour C _R > 1000 pF	
Capacitance drift after 1 therm	nal cycle	PLS 7	± (0,3 % + 0,3 pF)	PLS 7	Dérive de	capacité après 1 cycle thermique
		PLS 8	± (0,5 % + 0,5 pF)	PLS 8		
Stability class	PLS 7	• for C _R ≤ 3900 pF	2	• pour C _R ≤ 3900 pF	PLS 7	Classe de stabilité
	PLS 8	• for C _R > 3900 pF	3	• pour C _R > 3900 pF	PLS 8	
			3			

For other characteristics, see page XX

Autres caractéristiques voir page XX


CAPACITANC	E VALUES AND	RATED VOLTA	GE (D.C.)						VALEURS DE CAPA	CITE ET DE TENSION (U _{RC})	
					Voltage	/ Tension U _{RC}	P	LS 7	PL	S 8	
Dimensions	(mm)						10	00 V _{CC}	63 V _{CC}		
L	h	е	Х	Y	W	Boîtier	C _R min	C _R max	C _R min	C _R max	
5	13	7,5	5,08	2,54	0,6	81			10 pF	3 920 pF	
7,5	13	7,5	5,08	5,08	0,6	82			4 020 pF	15 000 pF	
10	13	10	7,62	7,62	0,6	83			15 400 pF	34 000 pF	
6,25	13	6,25	5,08	5,08	0,6	84			100 pF	10 000 pF	
10	17,5	5	5,08		0,6	А	100 pF	499 pF			
10	17,5	10	5,08	5,08	0,6	В	510 pF	3 900 pF			
12,5	17,5	12,5	7,62	7,62	0,6	С	3 920 pF	13 300 pF			
25	17,5	15	15,24	5,08	0,8	F	13 700 pF	32 400 pF			
max	max		nces on dimer		+10% - 0,05		± 5% - ± 2,5% - ± 1,25%				
			nces on almer nces dimensio				Capacitance tolerances / Tolérances sur capacité				

HOW TO ORDER	HOW TO ORDER EXEMPLE DE CODIFICATION À LA COMMANDE												
Model	Case	W: if complient RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})								
PLS 7	A	-	330 pF	± 5%	100 V								
Modèle	Boïtier	W : si conforme RoHS	Capacité	Tol. sur capa.	Tension nom. (V_{CC})								

SUMMARY SOMMAIRE

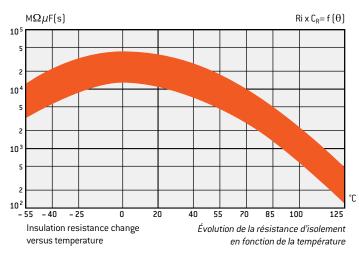
 Généralités sur les condensateurs mica reconstitué et composite H.T......**96**Feuilles particulières des condensateurs mica reconstitué et composite H.T.....**101**

RECONSTITUTED MICA AND COMPOSITE	CAPACITORS H.T.	RÉPERTOIRE DES CONDENSATEURS CONDENSATEURS MICA RECONSTITUÉ ET COMPO					
Commercial type Appellation commerciale	Standard reference Modèle normalisé	Capacitance Capacité	Rated voltage U _{RC} Tension nominale U _{RC}	Pag Pag			
HT 72		100 pF-4,7 μF	630 V-25000 V	10			
HT 77		470 pF-0,33 μF	1000 V - 5000 V	10			
HT 96		1000 pF - 0,12 μF	3000 V - 10 000 V	10			
HT 78		330 pF-1,5 μF	630 V - 10 000 V	10			
HT 78 P		330 pF-1,5 μF	630 V - 10 000 V	10			
HP 86		100 pF-2,2 μF	1500 V - 20000 V	10			
HT 86 P		100 pF-2,2 μF	1500 V - 20000 V	10			
HT 97		100 pF-2,2 μF	1500 V - 20000 V	10			
HT 97 P		100 pF-2,2 μF	1500 V - 20000 V	10			

GENERAL INFORMATION GÉNÉRALITÉS

CONSTRUCTION

Various composite dielectrics (plastic + paper or reconstituted mica) are used for manufacturing high-voltage capacitors.


They are impregnated with solid thermo-setting resins such as epoxy, polyester or silicons.

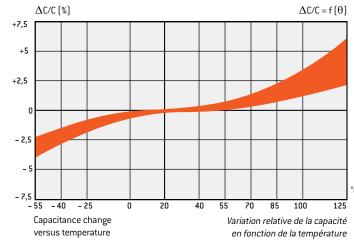
This technology gives very high stability of mechanical and electrical characteristics with a temperature range of –55°C to + 125°C or + 155°C and even + 200°C on request.

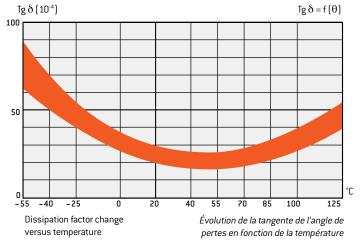
Rated voltage is applicable for all temperature ranges indicated on the data sheet (HT 72 - HT 77 - HT 78 - HT 86 - HT 96 - HT 97).

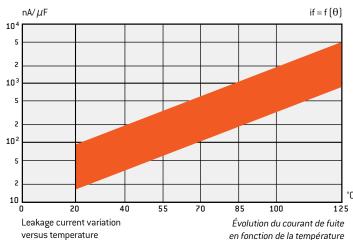
ELECTRICAL CHARACTERISTICS

Electrical characteristics versus temperature (plastic composite)

TECHNOLOGIE DE CONSTRUCTION

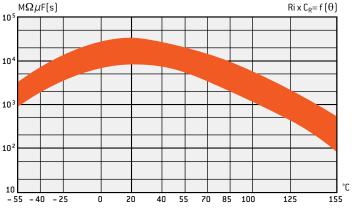

Divers diélectriques composites (plastique + papier ou mica reconstitué) sont utilisés pour réaliser ces Condensateurs mica reconstitué et COMPOSITE H.T.. Ils sont imprégnés avec des résines solides thermodurcissables telles que époxy, polyester ou silicone.

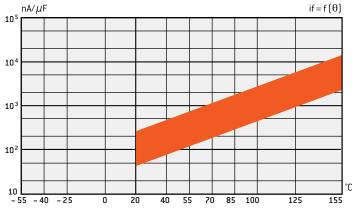

Ces technologies permettent d'obtenir une très grande stabilité des propriétés mécaniques et électriques dans une gamme de températures de -55°C à + 125°C ou + 155°C et même, + 200°C sur demande.

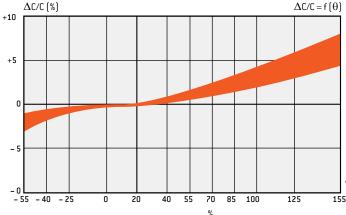

La tension nominale est applicable dans toute la gamme de températures de la feuille particulière (HT 72 - HT 77 - HT 78 - HT 86 - HT 96 - HT 97).

CARACTÉRISTIQUES ÉLECTRIQUES

Évolution des caractéristiques électriques en fonction de la température (composite plastique)



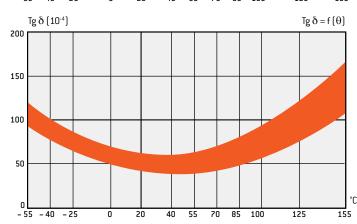

www.exxelia.com - info@exxelia.com 96 Tel : + 33 (0)1 49 23 10 00 Page revised - Version 04/15


GENERAL INFORMATION GÉNÉRALITÉS

Electrical characteristics versus temperature (composite reconstituted mica)

Evolution des caractéristiques électriques en fonction de la température (composite mica reconstitué)

20


15

10

103

Peak A.C. voltage versus frequency

(percent of rated D.C. voltage)

Filtering

The sum of D.C. voltage and superimposed A.C. peak voltage shall not exceed the value of the rated D.C. voltage U_{RC} . In addition, the value of the superimposed A.C. peak voltage is determined in the diagram here below.

Filtrage

La somme de la tension continue et de la tension crête alternative superposée ne doit pas excéder la valeur de la tension nominale continue U_{RC} . En outre, la valeur de la tension crête alternative superposée est définie dans la courbe ci-contre.

Rapid discharges pulse ratings

Due to the technology used, EXXELIA TECHNOLOGIES high-voltage capacitors are highly recommended for energy storage, ratardation lines, and low impedance circuits.

For these applications, service life depends

on various parameters, such as: discharge shape and mode, repetition frequency, operating mode, climatic conditions...

Please contact our technical department for further information on these applications.

Régimes d'impulsions déchargesrapides

Les Condensateurs mica reconstitué et composite H.T. EXXELIA TECHNOLOGIES sont particulièrement recommandés, du fait de leur technologie,

pour le stockage d'énergie, les lignes à retard, les circuits basse impédance. Pour ces utilisations, la durée de vie est fonction de plusieurs paramètres tels que : forme et mode de décharge, fréquence de récurrence, mode de fonctionnement, conditions climatiques... Consulter notre Service Technique pour ces applications.

F(Hz)

10

Tension alternative zéro

crête en fonction de la fréquence

(% de la tension nominale continue)

Special characteristics

Due to the vast experience in this domain EXXELIA TECHNOLOGIES can also propose capacitor with special characteristics such as:

- capacitors with low partial discharges
- special test voltage capacitors
- high-reliability capacitors
- capacitors manufactured according to customer specifications.

Caractéristiques particulières

L'expérience acquise par EXXELIA TECHNOLOGIES dans ce domaine permet de proposer, en plus de celles énoncées ci-dessus, des caractéristiques

- condensateurs exempts de décharges partielles
- condensateurs à tensions d'essais particulières
 - condensateurs à haut niveau de fiabilité
 - condensateurs suivant cahiers des charges.

97 Tel:+33(0)149231000 Page revised - Version 04/15 www.exxelia.com - info@exxelia.com

°C.

GENERAL INFORMATION GÉNÉRALITÉS

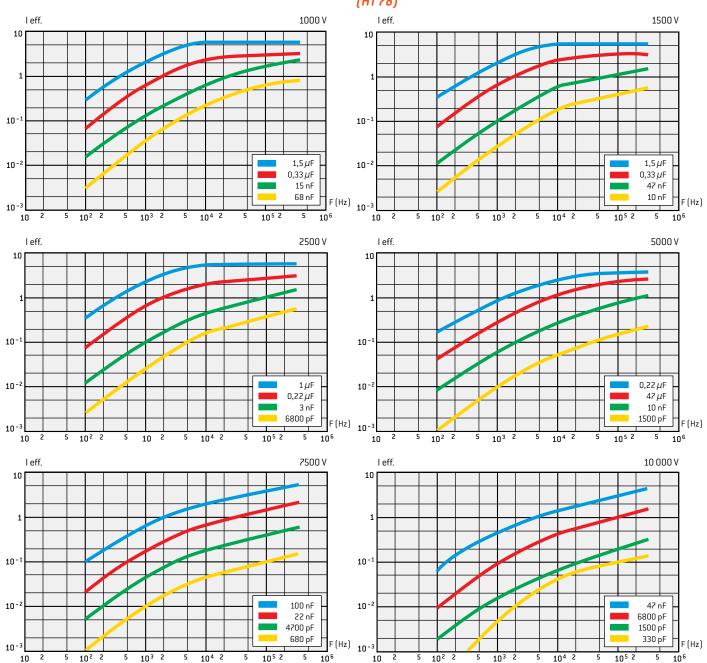
A.C. Operation

A.C. sinewave voltage at 50 Hz applied to the capacitor shall not exceed the values specified in the cross-reference table below for the different U_R rated voltage values. For frequencies exceeding > 50 Hz and for non sinewave waveforms, seek advice from our Technical Department.

. Cross-references between D.C. rated voltage values U_{RC} and permissible sinewave A.C. voltage values $\rm U_{RA}$ at 50 Hz :

Régimes alternatifs

La tension efficace sinusoïdale à 50 Hz appliquée au condensateur ne doit pas dépasser les valeurs indiquées dans le tableau de concordance ci-dessous pour les \dot{d} ifférentes valeurs de tension nominale U_{R^*}


Pour les fréquences > 50 Hz et pour les formes d'ondes non sinusoïdales, consulter notre Service Technique.

Concordance entre les tensions nominales continues U_{RC} et les tensions efficaces admissibles sinusoïdales U_{RA} à 50 Hz :

U _{RC} (V _{CC})	630	1000	1500	2500	3500	5000	7500	10000	12500	15000	20000	25000	U _{RC} (V _{DC})
U _{RA} (V _{CA})	240	300	400	500	800	1200	1600	2400	2800	3200	4800	6000	U _{RA} (V _{AC})

RMS current versus frequency (HT 78)

Intensités efficaces admissibles en fonction de la fréquence (HT 78)

To determine the acceptable rms current versus frequency for HT 86 models, apply a coefficient of 0,7 to the curve above.

Pour l'intensité efficace admissible en fonction de la fréquence des modèles HT 86, utiliser les courbes ci-dessus en appliquant un coefficient de 0,7.

98 Tel: + 33 (0)1 49 23 10 00 Page revised - Version 04/15 www.exxelia.com - info@exxelia.com

GENERAL INFORMATION GÉNÉRALITÉS

RECOMMENDATIONS BEFORE USE

EXXELIA TECHNOLOGIES's high voltage composite (HT 72, HT 77 etc.) or mica composite (HT 78, HT 86, HT 96, HT 97 etc.) capacitors, can be stored for a maximum period of 2 years in their original packaging* (stored in normal climatic conditions).

The following procedure should be followed in function of the storage time (the storage time is the time between delivery and the date of unpacking from the original packaging):

- From 0 to 12 months:
- no instructions.
- From 12 to 18 months:
- dried in a ventilated chamber.
- conditions = 24 hours at 100°C for composite technology 24 hours at 125°C for mica reconstituted com-posite technology.
- From 18 months to 2 years:
- dried in a ventilated chamber,
- conditions = 48 hours at 100°C for composite technology 48 hours at 125°C for mica reconstituted com-posite technology.

When removed from storage the capacitors should be used within 3 months. During this period extreme care should be taken in handling all high voltage components.

If the capacitors are not used within the 3 months period the following procedure should be followed:

- cleaned,
- dried in a ventilated chamber,
 conditions = 24 hours at 100°C for composite technology
 24 hours at 125°C for mica reconstituted com-posite technology.
- * Long life packaging can be provided on request (contact our Sales Department).

Nota

By extreme care it is understood that standard precautions are applied when handling high voltage components.

For example :

- handling by qualified personnel only,
- electrical security regulations must be respected,
- component electrical characteristics must be respected,
- storage and handling in a clean and dry area free from agressive chemical substances,
- handle with care to avoid unnecessary shock, scrapes, dents...
- handle with gloves and/or clean before power on (check compatability of cleaning solvant)
- dry and clean before integrating into a potted, varnished or impregnated equipment or subassemblu.
- etc.

PRESCRIPTION DE DESTOCKAGE

Les Condensateurs mica reconstitué et composite H.T. EXXELIA TECHNOLOGIES, technologie composite (HT 72, HT 77 et dérivés) ou composite mica reconstitué (HT 78, HT 86, HT 96, HT 97 et dérivés) peuvent être stockés en magasin pendant une durée maximale de 2 ans dans leur emballage d'origine* (stockage dans les «conditions climatiques normales» France métropolitaine).

Les prescriptions de déstockage à appliquer en fonction du temps de stockage sont les suivantes (le temps de stockage est le temps séparant la date de livraison de la date d'ouverture de l'emballage d'origine):

- De 0 à 12 mois :
- pas de prescription.
- De 12 à 18 mois :
- effectuer un séchage en étuve ventilée,
- durée = 24 heures à 100°C pour la technologie composite 24 heures à 125°C pour la technologie composite mica reconstitué.
- De 18 mois à 2 ans :
- effectuer un séchage en étuve ventilée,
 durée = 48 heures à 100°C pour la technologie composite
 48 heures à 125°C pour la technologie composite
 mica reconstitué.

Après le déstockage, les condensateurs doivent être utilisés dans un délai de 3 mois. Durant cette période, toutes les précautions devront être prises lors des manipulations en cours de production, afin de respecter les «règles de l'art» relatives aux composants haute tension.

Si les condensateurs ne sont pas utilisés dans un délai de 3 mois, les prescriptions suivantes doivent être de nouveau appliquées :

- nettoyer,
- effectuer un séchage en étuve ventilée, durée = 24 heures à 100°C pour la technologie composite 24 heures à 125°C pour la technologie composite mica reconstitué.
- * Des emballages «longue durée» peuvent être fournis sur demande (consulter notre Service Commercial).

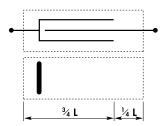
Note

Il faut entendre par «règles de l'art» les règles habituelles à respecter lors de la manipulation et de l'utilisation de composants haute tension, notamment [liste non exhaustive]:

- manipulation exclusivement par du personnel habilité,
- respect des règles de sécurité électriques,
- respect des limites électriques définies dans les feuilles particulières ou les fiches techniques,
- stockage et manipulation dans un endroit propre, sec et à l'abri de substances chimiques agressives,
- manipulation avec précaution pour éviter les chocs, rayures, coups divers...
- manipulation avec des gants et/ou nettoyage (vérifier compatibilité solvant/ matériau) avant toute mise sous tension,
- séchage et nettoyage avant intégration dans un équipement ou un sous-ensemble surmoulé, vernis ou imprégné,
- etc

GENERAL INFORMATION GÉNÉRALITÉS

Identification and connection of external foil


The external foil, which covers about three-quarters of the body of the capacitor, is identified by a black line to the left of the marking. Voltage applied to the lead connected to this external foil is equal and constant in all this area.

The internal foil and corresponding voltage potential concerns the remaining quarter.

Repérage et branchement de l'armature extérieure

L'armature extérieure, qui recouvre environ les 3/4 du corps des condensateurs, est repérée par un trait à gauche du marquage. Le potentiel appliqué à la connexion reliée à cette armature est égal et constant dans toute cette zone.

L'armature intérieure et le potentiel correspondant concernent le 1/4 restant.

Generally, the external foil is connected to the voltage potential which is the closest to the environment, that is, the lowest potential (in absolute value). The internal foil is connected to the higher voltage potential - HT or + HT.

An insulation of 500 V is ensured for "polyester wrapped" versions [HT 78, HT 86, HT 97] and "premolded" versions [HT 78 P, HT 86 P, HT 97 P] while an insulation of 5 000 V is ensured for "epoxy resin molded" versions [HT 72, HT 77, HT 96].

If a higher insulation is needed, it will be assured by the user.

For capacitors manufactured "on custom request" a preferred sense of connection may be specified to preserve the insulation between leads and casing as well as the electrical field orientation.

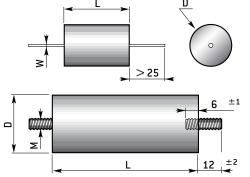
Although these capacitors are not polarized testing during production and burn-in tests "orients" the dielectric.

It is recommended to respect this polarity which is in this case clearly marked.

Dans la majorité des cas, l'armature extérieure est connectée au potentiel le plus proche de celui de l'environnement, c'est-à-dire au potentiel le plus bas (en valeur absolue). L'armature intérieure est connectée au potentiel le plus haut - HT ou + HT.

L'isolement assuré par l'enrobage est de 500 V pour les versions "enrobé polyester" (HT 78, HT 86, HT 97) et "prémoulé" (HT 78 P, HT 86 P, HT 97 P) et de 5 000 V pour les versions "moulé résine époxy" (HT 72, HT 77 HT 96). Si un isolement supérieur à ces tensions est nécessaire, il devra être assuré par l'utilisateur.

Pour les condensateurs réalisés sur cahier des charges, un sens préférentiel de branchement peut être demandé à l'utilisateur afin de préserver l'isolement "bornes-masse" spécifié, ainsi que l'orientation du champ électrique.


Bien que ces condensateurs ne soient pas polarisés, les contrôles de fabrication et les opérations de déverminage sous tension "orientent" le diélectrique. Il est alors recommandé de respecter la polarité qui est dans ce cas repérée clairement.

HT 72 *RoHS = W*

Axial leads Model HT 72

Sorties Axiales Modèle HT 72

DIELECTRIC

Composite epoxy resin impregnated

TECHNOLOGY

Metal foils, non-inductive Epoxy resin molded

MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

Composite imprégné résine époxy

TECHNOLOGIE

Armatures métalliques, non inductif Moulé résine époxy

MARQUAGE

modèle capacité tolérance tension nominale date-code

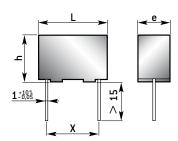
		-				
GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES		
Operating temperature		− 55°C + 125°C		Température d'utilisation		
D.F. Tg δ at 1 kHz	• for C _R ≤ 1,5 nF	≤ 70.10 ⁻⁴	• pour $C_R \le 1,5 \text{ nF}$	Tg δ à 1 kHz		
D.F. Tg δ at 1 kHz	• for C _R > 1,5 nF	≤ 50.10 ⁻⁴	• pour $C_R > 1,5$ nF	Tg δ à 1 kHz		
Insulation resistance	• for C _R ≤ 0,22 μF	≥ 25000 MΩ	• pour C _R ≤ 0,22 μF	Résistance d'isolement		
	• for C _R > 0,22 μF	≥ 5000 MΩ μ F	• pour C _R > 0,22 μF			
Test voltage	• for U _{RC} ≤ 5000 V	2 U _{RC} + 1000 V	• pour U _{RC} ≤ 5000 V	Tension de tenue		
	• for U _{RC} > 5000 V	1,5 U _{RC}	• pour U _{RC} > 5000 V			
Insulation between leads and case	3	> 25000 MΩ		Isolement entre hornes réunies et masse		

CAPACITANCI	E VALUES AND	RATED VOLTA	GE (D.C.)								VAL	EURS DE CAP	ACITE ET DE TE	NSION (U _{RC})
Dimensions	(mm)		630 V	1000 V	1500 V	2500 V	3500 V	5000 V	7500 V	10000 V	12500 V	15000 V	20000 V	25000 V
L	D	W/M	C _R	C _R	C _R	C _R	C _R	C _R	C _R	C _R	C _R	C _R	C _R	C _R
20	8	0,8	10 nF	4,7 nF	3,3 nF									
20	8	0,8	15 nF	6,8 nF										
20	10	0,8	22 nF	10 nF	4,7 nF	2,2 nF	1,5 nF							
20	10	0,8				3,3 nF								
20	12	0,8	33 nF	15 nF	6,8 nF	4,7 nF	2,2 nF	470 pF						
20	12	0,8		22 nF				680 pF						
20	12	0,8						1 nF						
20	14	0,8	47 nF	33 nF	10 nF	6,8 nF								
20	14	0,8	68 nF		15 nF									
20	16	0,8	0,1 <i>μ</i> F	47 nF	22 nF									
34	10	1				10 nF	3,3 nF	1,5 nF	470 pF					
34	10	1					4,7 nF		680 pF					
34	12	1				15 nF	6,8 nF	2,2 nF	1 nF					
34	14	1	0,15 <i>μ</i> F	68 nF	33 nF	22 nF	10 nF	3,3 nF	1,5 nF					
34	16	1	0,22 μF	0,1 μF	47 nF	33 nF	15 nF	4,7 nF	2,2 nF	470 pF				
34	18	1	0,33 μF	0,15 μF	68 nF	47 nF	22 nF	6,8 nF	3,3 nF	680 pF				
34	18	1								1 nF				
34	20	1				68 nF	33 nF	10 nF	4,7 nF	1,5 nF				
34	22	1	0,47 μF	0,22 μF	0,1 <i>μ</i> F					2,2 nF				
34	26	1				0,1 μF	47 nF			3,3 nF				
62	16	1						15 nF	6,8 nF		470 pF	220 pF	100 pF	
62	16	1									680 pF	330 pF	150 pF	
62	18	1						22 nF	10 nF	4,7 nF	1 nF	470 pF	220 pF	100 pF
62	18	1										680 pF	330 pF	150 pF
62	20	1	0,68 <i>μ</i> F	0,33 μF	0,15 μF		68 nF	33 nF	15 nF	6,8 nF	1,5 nF	1 nF	470 pF	220 pF
62	20	1									2,2 nF		680 pF	330 pF
62	22	1			0,22 <i>μ</i> F	0,15 μF	0,1 μF			10 nF	3,3 nF	1,5 nF	1 nF	470 pF
62	22	1												680 pF
62	25	M 3	1 μF	0,47 μF	0,33 μF	0,22 μF	0,15 <i>μ</i> F	47 nF	22 nF	15 nF	4,7 nF	2,2 nF	1,5 nF	1 nF
62	30	М3	1,5 μF	0,68 µF	0,47 μF	0,33 μF	0,22 <i>μ</i> F	68 nF	33 nF	22 nF	6,8 nF	3,3 nF	2,2 nF	1,5 nF
62	35	M 4	2,2 μF	1 μF	0,68 <i>μ</i> F	0,47 μF	0,33 μF	0,1 μF	47 nF	33 nF	10 nF	4,7 nF	3,3 nF	2,2 nF
112	30	M 3		1,5 μF	1 μF	0,68 μF	0,47 μF	0,15 <i>μ</i> F	68 nF	47 nF	15 nF	6,8 nF	4,7 nF	3,3 nF
112	30	M 3										10 nF		
112	35	M 4	3,3 μF	2,2 μF		1 μF	0,68 <i>μ</i> F	0,22 μF	0,1 <i>μ</i> F	68 nF	22 nF	15 nF	6,8 nF	4,7 nF
112	40	M 4	4,7 μF					0,33 μF		0,1 μF	33 nF	22 nF	10 nF	6,8 nF
112	45	M 4						0,47 μF			47 nF	33 nF	15 nF	10 nF
± 2	± 0,5	+10% - 0,05	_					± 20 % - ±	10 % - ± 5 %					

Tolerances on dimensions Tolérances dimensionnelles \pm 20 % - \pm 10 % - \pm 5 % Capacitance tolerances / Tolérances sur capacité

For intermediate value, the dimensions are those of the immediately superior value $\,$

Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure


HOW TO ORDER	HOW TO ORDER EXEMPLE DE CODIFICATION À LA COMMANDE										
Model	D, F : Quality level	W:RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})						
HT 72	-	-	1 µF	± 5%	1000 V						
Modèle	D, F : Niveau de qualité	W : RoHS	Capacité	Tol. sur capa.	Tension nom. (V _{CC})						

HT 77 *RoHS = W*

Radial leads / Sorties radiales Models / Modèles HT 77

DIELECTRIC

Composite epoxy resin impregnated

TECHNOLOGY

Metal foils, non-inductive Epoxy resin molded

MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

Composite imprégné résine époxy

TECHNOLOGIE

Armatures métalliques, non inductif Moulé résine époxy

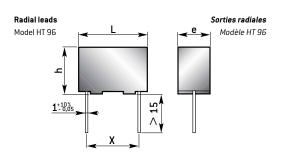
MARQUAGE

modèle capacité tolérance tension nominale date-code

GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Operating temperature		− 55°C + 125°C		Température d'utilisation
D. F. Tg δ at 1 kHz	for C _R ≤ 1,5 nF	≤ 70.10 ⁴	pour C _R ≤ 1,5 nF	Tg δ à 1 kHz
D. F. Tg δ at 1 kHz	for C _R > 1,5 nF	≤ 50.10 ⁴	pour C _R > 1, 5 nF	Tg δ à 1 kHz
Insulation resistance	for C _R ≤ 0,22 μF	≥ 25000 MΩ	pour C _R ≤ 0,22 μF	Résistance d'isolement
	for C _R > 0,22 µF	≥ 5000 MΩ µ F	pour C _R > 0,22 μF	
Test voltage		1,6 U _{RC}		Tension de tenue
Insulation between leads and case		≥ 25000 MΩ		Isolement entre bornes réunies et masse

CAPACITA	NCE VALUE	S AND RAT	ED VOLTAGE	(D.C.)				VALEURS DE CAI	PACITE ET DE TENSION (U_R
Dimension	s (mm)				1000 V	1500 V	2500 V	3500 V	5000 V
18	11	7	15,24	0,8	6800 pF	3300 pF			
18	12	8	15,24	0,8	10000 pF	4700 pF	2200 pF	1000 pF	470 pF
18	14	10	15,24	0,8	15000 pF	6800 pF	3300 pF	1500 pF	680 pF
18	16	10	15,24	0,8	22000 pF	10000 pF	4700 pF	2200 pF	1000 pF
32	12	8	27,94	1	33000 pF	15000 pF	6800 pF	3300 pF	1500 pF
32	12	8	27,94	1	47000 pF	22000 pF	10000 pF	4700 pF	2200 pF
32	16	10	27,94	1	68000 pF	33000 pF	15000 pF	6800 pF	3300 pF
32	18	12	27,94	1	0,1 <i>μ</i> F	47000 pF	22000 pF	10000 pF	4700 pF
32	21	14	27,94	1	0,15 <i>µ</i> F	68000 pF	33000 pF	15000 pF	6800 pF
32	24	16	27,94	1	0,22 <i>μ</i> F	0,1 μF	47000 pF	22000 pF	10000 pF
32	28	18	27,94	1	0,33 μF	0,15 μF	68000 pF	33000 pF	15000 pF
32	29	20	27,94	1		0,22 <i>μ</i> F	0,1 μF	47000 pF	22000 pF
62	25	15	55,85	1,2			0,15 <i>μ</i> F	68000 pF	33000 pF
62	30	24	55,85	1,2			0,22 <i>μ</i> F		47000 pF
± 1	± 1	± 1	± 1	+10% - 0,05	-	Canacitar	± 20% - ± 10% - ± 5% nce tolerances / Tolérances sur	rannaitá	

For intermediate value, the dimensions are those of the immediately superior value


Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure

HOW TO ORDER EXEMPLE DE CODIFICATION À LA								
Model	W: if complient RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{AC})				
HT 77	-	1000 pF	± 10%	5000 V				
Modèle	W: si conforme RoHS	Capacité	Tol. sur capa.	Tension nom. (V _{CA})				

HT 96 *RoHS = W*

Modèles Models	L ± 0,5	h ± 0,5	X ± 0,5	e max
HT 96-1	20	19	17,8	6,5
HT 96-2	20	19	17,8	8
HT 96-3	32	21	27,94	6,5
HT 96-4	32	21	27,94	9
HT 96-5	45	23	40,64	6,5
HT 96-6	45	23	40,64	9

DIELECTRIC Composite reconstituted

TECHNOLOGY Metal foils, mica Epoxy resin impregnated non-inductive Epoxy resin molded

MARKING model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE Composite mica reconstitué Imprégné résine époxy

TECHNOLOGIE

Armatures métalliques, non inductif Moulé résine époxy

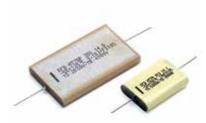
MARQUAGE modèle capacité tolérance tension nominale date-code

GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Operating temperature		− 55°C + 125°C		Température d'utilisation
D.F. Tg δ at 1 kHz	• for C _R ≤ 1,5 nF	≤ 70.10 ⁻⁴	• pour C _R ≤ 1,5 nF	Tg δ à 1 kHz
D.F. Tg δ at 1 kHz	• for C _R > 1,5 nF	≤ 50.10 ⁻⁴	• pour C _R > 1,5 nF	Tg δ à 1 kHz
Insulation resistance under 50	00 V _{DC}	≥ 25000 MΩ		Résistance d'isolement sous 500 V _{CC}
Test voltage		1,4 U _{RC}		Tension de tenue
Insulation between leads and o	case	≥ 25000 MΩ		Isolement entre bornes réunies et masse

CAPACITANCE VAL	UES AND RATED V	OLTAGE (D.C.)						VALEUI	RS DE CAPACITE ET	DE TENSION (U _r
Models /	30	00 V	40	4000 V 5000 V		75	00 V	100	00 V	
Modèles	C _R min	C _R max								
HT 96-1	18 nF	22 nF	12 nF	15 nF	3,9 nF 6,8 nF	5,6 nF 10 nF	1,5 nF 2,2 nF	1,8 nF 3,3 nF	1 nF	1,2 nF
HT 96-2	22 nF 33 nF	27 nF 33 nF	15 nF	18 nF	4,7 nF 8,2 nF	6,8 nF 12 nF	2,2 nF 3,3 nF	2,7 nF 3,9 nF	1 nF 1,5 nF	1,2 nF 1,8 nF
HT 96-3	39 nF 56 nF	47 nF 56 nF	27 nF	33 nF	12 nF 18 nF	15 nF 22 nF	5,6 nF 8,2 nF	6,8 nF 10 nF	1,5 nF 2,7 nF	2,2 nF 4,7 nF
HT 96-4	56 nF 82 nF	68 nF 82 nF	39 nF	47 nF	18 nF 27 nF	22 nF 33 nF	8,2 nF 12 nF	10 nF 15 nF	1,8 nF 3,9 nF	3,3 nF 6,8 nF
HT 96-5	68 nF	82 nF	39 nF 56 nF	47 nF 56 nF	18 nF 27 nF	22 nF 33 nF	12 nF	15 nF	1,8 nF 4,7 nF	3,9 nF 10 nF
HT 96-6	100 nF	120 nF	68 nF	82 nF	27 nF 39 nF	33 nF 56 nF	15 nF 22 nF	18 nF 22 nF	2,7 nF 6,8 nF	5,6 nF 12 nF

± 20 % - ± 10 % - ± 5 % Capacitance tolerances / Tolérances sur capacité

For intermediate value, the dimensions are those of the immediately superior value


Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure

Model Case W:RoHS Capacitance	Capa, tolerance	Detect valence (V)
	capa. tolcrance	Rated voltage (V _{DC})
HT 96 6 – 100 nF	± 20%	3000 V
Modèle Boîtier W : ROHS Capacité	Tol. sur capa.	Tension nom. (V_{CC})

HT 78 - HT 78 P⁽¹⁾

RoHS = W

Axial leads Sorties Axiales Model HT 78 - HT 78 P - HT 78 PS Modèle HT 78 - HT 78 P - HT 78 PS >25

(1) PREMOLDED CAPACITOR FOR DIELECTRIC FLUID USE OR ENCAPSULATION CONDENSATEUR PREMOULE POUR UTILISATION DANS UN FLUIDE DIELECTRIQUE OU SURMOULAGE

HT 78 PS For space use. Contact our sales department. HT 78 PS Pour utilisation spatiale. Consulter notre Service Commercial.

DIELECTRIC

Composite reconstituted Epoxy resin impregnated

TECHNOLOGY

Metal foils, non-inductive Polyester wrapped Epoxy resin sealed

MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

Composite mica reconstitué Imprégné résine époxy

TECHNOLOGIE

Armatures métalliques, non inductif Enrobé polyester Obturé résine époxy

MARQUAGE

modèle capacité tolérance tension nominale date-code

GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Operating temperature	• HT 78	– 55°C + 155°C	• HT 78	Température d'utilisation
	• HT 78 P	− 55°C + 125°C	• HT 78 P	
D.F. Tg δ at 1 kHz	• for C _R ≤ 1,5 nF	≤ 70.10⁻⁴	• pour C _R ≤ 1,5 nF	Tg δ à 1 kHz
D.F. Tg δ at 1 kHz	• for C _R > 1,5 nF	≤ 50.10 ⁻⁴	• pour C _R > 1,5 nF	Tg δ à 1 kHz
Insulation resistance	• for C _R ≤ 0,22 μF	≥ 25000 MΩ	• pour C _R ≤ 0,22 μF	Résistance d'isolement
	• for C _R > 0,22 μF	≥ 5000 MΩ µ F	• pour C _R > 0,22 μF	
Test voltage		1,6 U _{RC}		Tension de tenue
Insulation between leads and case		≥ 25000 MΩ		Isolement entre bornes réunies et masse

CAPACITANCE	VALUES AND	D RATED VOLTA	GE (D.C.)						VALEUR	RS DE CAPACITE ET	DE TENSION (U _{RC})
Dimensions ([mm]			630 V	1000 V	1500 V	2500 V	3500 V	5000 V	7500 V	10000 V
L	h*	e**	W	C _R	C _R	C _R	C _R	C _R	C _R	C _R	C _R
35	10	4	1	22000 pF	15000 pF	10000 pF	6800 pF	3300 pF	1500 pF	680 pF	330 pF
35	12	6	1	33000 pF	22000 pF	15000 pF	10000 pF	4700 pF	2200 pF	1000 pF	470 pF
35	16	6	1	47000 pF	33000 pF	22000 pF	15000 pF	6800 pF	3300 pF	1500 pF	680 pF
35	17	7	1	68000 pF	47000 pF	33000 pF	22000 pF	10000 pF	4700 pF	2200 pF	1000 pF
35	23	7	1	0,1 <i>μ</i> F	68000 pF	47000 pF	33000 pF	15000 pF	6800 pF	3300 pF	1500 pF
35	25	9	1	0,15 μF	0,1 <i>μ</i> F	68000 pF	47000 pF	22000 pF	10000 pF	4700 pF	2200 pF
35	38	8	1	0,22 μF	0,15 μF	0,1 μF	68000 pF	33000 pF	15000 pF	6800 pF	3300 pF
35	41	11	1	0,33 <i>μ</i> F	0,22 μF	0,15 <i>μ</i> F	0,1 μF	47000 pF	22000 pF	10000 pF	4700 pF
61	37	7	1	0,47 μF	0,33 μF	0,22 μF	0,15 <i>μ</i> F	68000 pF	33000 pF	15000 pF	6800 pF
61	48	8	1	0,68 μ F	0,47 μF	0,33 μF	0,22 μF	0,1 <i>μ</i> F	47000 pF	22000 pF	10000 pF
61	50	10	1	1 μF	0,68 μF	0,47 μF	0,33 μF	0,15 <i>μ</i> F	68000 pF	33000 pF	15000 pF
61	53	13	1	1,5 <i>μ</i> F	1 μF	0,68 μF	0,47 μF	0,22 μF	0,1 μF	47000 pF	22000 pF
79	51	11	1,2		1,5 μF	1 μF	0,68 μF	0,33 μF	0,15 μF	68000 pF	33000 pF
79	48	18	1,2			1,5 μF	1 μF	0,47 μF	0,22 μF	0,1 μF	47000 pF
HT 78 ± 2 HT 78 P ± 1	* ± 1	** ± 1	+10% - 0,05				± 20 % - ±	10 % - ± 5 %		-	

Tolerances on dimensions Tolérances dimensionnelles

Capacitance tolerances / Tolérances sur capacité

For/pour HT 78:*h : < 20 mm = + 2 mm/-10% ** e : \leq 10 mm = \pm 1 mm $:> 20 \text{ mm} = \pm 2 \text{ mm}$:> 10 mm = ± 2 mm

For intermediate value, the dimensions are those of the immediately superior value

Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure

HOW TO ORDER EXEMPLE DE CODIFICATION À LA COMMANDE										
Model	P:(1)	S: Quality level	W:RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})	Lev B/C/EM : Space use			
HT 78	_	_	_	1 <i>µ</i> F	± 10%	1500 V	_			
Modèle	P :(1)	S : Niveau de qualité	W : RoHS	Capacité	Tol. sur capa.	Tension nom. (V_{CC})	Lev B/C/EM : Spatial			

HT 86 - HT 86 P⁽¹⁾

RoHS = W

Axial leads Sorties Axiales Model HT 86 - HT 86 P - HT 86 PS Modèle HT 86 - HT 86 P - HT 86 PS >25

(1) PREMOLDED CAPACITOR FOR DIELECTRIC FLUID USE OR ENCAPSULATION CONDENSATEUR PREMOULE POUR UTILISATION DANS

UN FLUIDE DIELECTRIQUE OU SURMOULAGE

HT 86 PS For space use [ESA/SCC 3006/022]. Contact our sales department. HT 86 PS Pour utilisation spatiale (ESA/SCC 3006/022). Consulter notre Service Commercial.

DIELECTRIC

Composite reconstituted Epoxy resin impregnated

TECHNOLOGY

Metal foils, non-inductive Polyester wrapped Epoxy resin sealed

MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

Composite mica reconstitué Imprégné résine époxy

TECHNOLOGIE

Armatures métalliques, non inductif Enrobé polyester Obturé résine époxy

MARQUAGE

modèle capacité tolérance tension nominale date-code

GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Operating temperature		− 55°C + 125°C		Température d'utilisation
D.F. Tg δ at 1 kHz	• for C _R ≤ 1,5 nF	≤ 70.10 ⁻⁴	• pour C _R ≤ 1,5 nF	Tg δ à 1 kHz
D.F. Tg δ at 1 kHz	• for C _R > 1,5 nF	≤ 50.10 ⁻⁴	• pour C _R > 1,5 nF	Tg δ à 1 kHz
Insulation resistance	• for C _R ≤ 0,22 <i>µ</i> F	≥ 25000 MΩ	• pour C _R ≤ 0,22 μF	Résistance d'isolement
	• for C _R > 0,22 µF	≥ 5000 MΩ µ F	• pour C _R > 0,22 μF	
Test voltage		1,6 U _{RC}		Tension de tenue
Insulation between leads and case		≥ 25000 MΩ		Isolement entre bornes réunies et masse

CAPACITANCE	VALUES AND	RATED VOLTA	GE (D.C.)							VALEURS D	E CAPACITE ET D	E TENSION (U _{RC})
Dimensions (mm)			1500 V	2500 V	3500 V	5000 V	7500 V	10000 V	12500 V	15000 V	20000 V
L	h*	e**	W	C _R	C _R	C _R	C _R	C _R	C _R	C _R	C _R	C _R
25	12	4	1	22000 pF	15000 pF	10000 pF	4700 pF			100 pF		
35	10	4	1	33000 pF	22000 pF	15000 pF	6800 pF	2200 pF	1000 pF	680 pF		
35	12	6	1	47000 pF	33000 pF	22000 pF	10000 pF	3300 pF	1500 pF	1000 pF	470 pF	
35	16	6	1	68000 pF	47000 pF	33000 pF	15000 pF	4700 pF	2200 pF	1500 pF	680 pF	
35	24	6	1	0,1 μF	68000 pF	47000 pF	22000 pF	6800 pF	3300 pF	2200 pF	1000 pF	
35	30	8	1	0,15 μF	0,1 μF	68000 pF	33000 pF	10000 pF	4700 pF	3300 pFC	1500 pF C	
35	40	8	1	0,22 μF	0,15 μF	0,1 μF	47000 pF	15000 pF	6800 pF	4700 pF C	2200 pF C	
61	20	4	1	0,15 μF L	0,1 μFL	68000 pFL	33000 pFL	10000 pFL	4700 pFL	3300 pF	1500 pF	100 pF à 680 pF
61	22	6	1	0,22 μF L	0,15 μFL	0,1 <i>μ</i> FL	47000 pFL	15000 pFL	6800 pFL	4700 pF	2200 pF	1000 pF
61	24	8	1	0,33 μF		0,15 μF	68000 pF	22000 pF	10000 pF	6800 pF	3300 pF	1500 pF
61	38	8	1	0,47 μF	0,22 μF		0,1 μF	33000 pF	15000 pF	10000 pF	4700 pF	2200 pF
61	45	8	1		0,33 μF	0,22 μF		47000 pF	22000 pF	15000 pF	6800 pF	3300 pF
79	45	8	1,2	0,68 μF	0,47 μF	0,33 μF	0,15 μF	68000 pF	33000 pF	22000 pF	10000 pF	4700 pF
79	47	10	1,2	1 μF	0,68 μF	0,47 μF	0,22 μF	0,1 μF	47000 pF	33000 pF	15000 pF	6800 pF
105	47	10	1,2	1,5 μF	1 μF	0,68 μF	0,33 μF	0,15 μF	68000 pF	47000 pF	22000 pF	10000 pF
105	50	14	1,2	2,2 μF	1,5 μF	1 μF	0,47 μF	0,22 μF	0,1 μF	68000 pF	33000 pF	15000 pF
HT 86 ± 2 HT 86 P ± 1	* ± 1	** ± 1	+10% - 0,05		± 20 % - ± 10 % · ± 5 %							

± 20 % - ± 10 % - ± 5 % Capacitance tolerances / Tolérances sur capacité

Tolerances on dimensions Tolérances dimensionnelles

For/pour **HT 86**:*h : < 20 mm = + 2 mm/-10% * * e : $\le 10 \text{ mm} = \pm 1 \text{ mm}$

 $:> 20 \text{ mm} = \pm 2 \text{ mm}$ $:> 10 \text{ mm} = \pm 2 \text{ mm}$

Model Short / Modèle court : HT 86 C Model long / Modèle long : HT 86 L

For intermediate value, the dimensions are those of the immediately superior value

Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure

HOW TO ORD	HOW TO ORDER EXEMPLE DE CODIFICATION À LA COMMANDE										
Model	P:(1)	S: Quality level	Case : C = short - L = long	W:RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})	Lev B/C/EM : Space use			
HT 86	_	_	-	-	15000 pF	± 10%	7500 V	_			
Modèle	P :(1)	S : Niveau de qualité	Boîtier : C = court - L = long	W: RoHS	Capacité	Tol. sur capa.	Tension nom. (V _{CC})	Lev B/C/EM : Spatial			

HT 97 - HT 97 P⁽¹⁾

RoHS = W

(1) PREMOLDED CAPACITOR FOR DIELECTRIC FLUID USE OR ENCAPSULATION CONDENSATEUR PREMOULE POUR UTILISATION DANS UN FLUIDE DIELECTRIQUE OU SURMOULAGE

HT 97 PS For space use (EFD 606.02.390). Contact our sales department. HT 97 PS Pour utilisation spatiale (EFD 606.02.390). Consulter notre Service Commercial.

DIELECTRIC

Composite reconstituted mica Epoxy resin impregnated

TECHNOLOGY

Metal foils, non-inductive Polyester wrapped Epoxy resin sealed

MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

Composite mica reconstitué Imprégné résine époxy

TECHNOLOGIE

Armatures métalliques, non inductif Enrobé polyester Obturé résine époxy

MARQUAGE

modèle capacité tolérance tension nominale date-code

GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Operating temperature		− 55°C + 125°C		Température d'utilisation
D.F. Tg δ at 1 kHz	• for C _R ≤ 1,5 nF	≤ 70.10 ⁻⁴	• pour $C_R \le 1,5 \text{ nF}$	Tg δ à 1 kHz
D.F. Tg δ at 1 kHz	• for C _R > 1,5 nF	≤ 50.10 ⁻⁴	• pour $C_R > 1,5 \text{ nF}$	Tg δ à 1 kHz
Insulation resistance	• for C _R ≤ 0,22 μF	≥ 25000 MΩ	• pour $C_R \le 0.22 \mu F$	Résistance d'isolement
	• for C _R > 0,22 µF	≥ 5000 MΩ µ F	• pour $C_R > 0.22 \mu F$	
Test voltage		1,5 U _{RC}		Tension de tenue

CAPACITANCE	VALUES AND	RATED VOLTAG	GE (D.C.)							VALEURS D	E CAPACITE ET DI	TENSION (U _{RC})
Dimensions	(mm)			1500 V	2500 V	3500 V	5000 V	7500 V	10000 V	12500 V	15000 V	20000 V
L	h*	e**	W	C _R	C _R	C _R	C _R	C _R				
25	12	4	1	22 nF	15 nF	6,8 nF	3300 pF					
35	12	3,5	1	33 nF	22 nF	10 nF	4700 pF	2200 pF	1000 pF	1000 pF		
35	12	3,5	1	47 nF	33 nF	15 nF	6800 pF	3300 pF	1500 pF			
35	12	6	1	68 nF	47 nF	22 nF	10 nF	4700 pF	2200 pF	1500 pF	1000 pF	
35	16	6	1	0,1 μF	68 nF	33 nF	15 nF	6800 pF	3300 pF	2200 pF	1500 pF	
35	24	6	1	0,15 <i>μ</i> F	0,1 μF	47 nF	22 nF	10 nF	4700 pF	3300 pF	2200 pF	
35	30	8	1	0,22 <i>µ</i> F	0,15 <i>μ</i> F	68 nF	33 nF	15 nF	6800 pF	4700 pF	3300 pF	
35	40	8	1	0,33 <i>μ</i> F	0,22 <i>µ</i> F	0,1 <i>μ</i> F	47 nF	22 nF	10 nF	6800 pF	4700 pF	
61	20	4	1			68 nF	33 nF	15 nF	6800 pF	4700 pF	3300 pF	100 pF
61	20	4	1									150 pF
61	20	4	1									220 pF
61	20	4	1									330 pF
61	20	4	1									470 pF
61	20	4	1									680 pF
61	20	4	1									1000 pF
61	20	4	1									1500 pF
61	22	6	1	0,22 <i>µ</i> F	0,15 <i>μ</i> F	0,1 μF	47 nF	22 nF	10 nF	6800 pF	4700 pF	2200 pF
61	24	8	1	0,33 <i>μ</i> F	0,22 <i>μ</i> F	0,15 μF	68 nF	33 nF	15 nF	10 nF	6800 pF	3300 pF
61	30	8	1	0,47 μF	0,33 μF	0,22 <i>µ</i> F	0,1 μF	47 nF	22 nF	15 nF	10 nF	4700 pF
61	45	8	1	0,68 <i>µ</i> F	0,47 μF	0,33 μF	0,15 <i>µ</i> F	68 nF	33 nF	22 nF	15 nF	6800 pF
79	45	8	1,2	1 μF	0,68 <i>µ</i> F	0,47 μF	0,22 <i>µ</i> F	0,1 μF	47 nF	33 nF	22 nF	10 nF
79	47	10	1,2	1,5 μF	1 μF	0,68 <i>μ</i> F	0,33 <i>μ</i> F	0,15 μF	68 nF	47 nF	33 nF	15 nF
105	47	10	1,2	2,2 μF	1,5 μF	1 μF	0,47 μF	0,22 μF	0,1 μF	68 nF	47 nF	22 nF
105	50	14	1,2			1,5 μF	0,68 μF	0,33 μF	0,15 μF	0,1 <i>μ</i> F	68 nF	33 nF
HT 97 ± 2 HT 97 P + 1	* + 1	** + 1	+10% - 0,05					+ 20 % - + 10 %				

 \pm 20 % - \pm 10 %

Capacitance tolerances / Tolérances sur capacité

Tolerances on dimensions Tolérances dimensionnelles

For/pour HT 97:*h : < 20 mm = +2 mm/-10%** e : $\leq 10 \text{ mm} = \pm 1 \text{ mm}$

 $:> 20 \text{ mm} = \pm 2 \text{ mm}$ $:> 10 \text{ mm} = \pm 2 \text{ mm}$

Model long / Modèle long : HT 97 L

Toute valeur intermédiaire est exécutée dans les dimensions de la valeur

For intermediate value, the dimensions are those of the immediately superior value

EXEMPLE DE CODIFICATION À LA COMMANDE

immédiatement supérieure

HOW TO ORD	OW TO ORDER EXEMPLE DE CODIFICATION À LA COMMANDE								
Model	P:(1)	S: Quality level	L : Long cae	W:RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})	Lev B/C/EM: Space use	
HT 97	-	-	-	-	0,22 µ F	± 10%	7500 V	_	
Modèle	P :(1)	S : Niveau de qualité	L : Boîtier long	W : RoHS	Capacité	Tol. sur capa.	Tension nom. (V _{CC})	Lev B/C/EM : Spatial	

SUMMARY *SOMMAIRE*

General information on Teflon®	capacitors	109
Teflon® canacitors data sheets		110

Généralités sur les condensateurs au Téflon®	109
Feuilles particulières des condensateurs au Téflon®	110

LIST OF TEFLON® CAPACITORS	RÉPERTOIRE DES CONDENSATEURS AU TÉFLON								
Commercial type Appellation commerciale	Standard reference Modèle normalisé	Capacitance Capacité	Rated voltage U _{RC} Tension nominale U _{RC}	Page					
TA 72		470 pF - 0,33 μF	250 V - 400 V	110					

FILM SELECTION

Teflon® dielectrics with metal film-foil are selected for their excellent properties, or their power dissipation factor and insulating strength at high temperatures that can exceed 200°C.

Furthermore, this film is self-healing when metallized. For "stopping sampler" applications, Teflon dielectric with metal foils will be used, as this is the only dielectric to feature such low dielectric absorption.

CONSTRUCTION

These film capacitors are protected by a glass sealed non-magnetic metal case.

ELECTRICAL CHARACTERISTICS

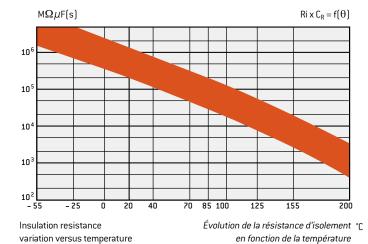
Capacitors which can be used in a temperature range between - 55° C and + 200° C show the characteristics described in the diagrams below.

CHOIX DU FILM

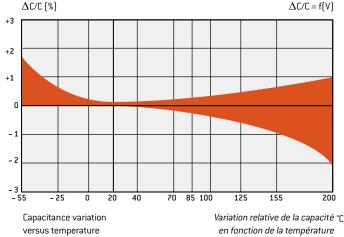
Les diélectriques Téflon® à armatures sont choisis pour leurs excellentes caractéristiques, facteur de dissipation et résistance d'isolement à des températures élevées, pouvant atteindre plus de 200°C.

De plus, ce film est autocicatrisable lorsqu'il est métallisé.

Pour des applications "échantillonneurs-bloqueurs", on choisira le Téflon armatures qui est le seul diélectrique à présenter une aussi faible absorption diélectrique.


TECHNOLOGIE DE CONSTRUCTION

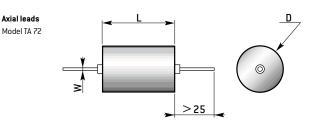
Les condensateurs réalisés avec ce film sont protégés par un boîtier métallique amagnétique obturé par des perles de verre.


CARACTÉRISTIQUES ÉLECTRIQUES

On obtient alors des condensateurs utilisables dans une gamme de températures de - 55°C à + 200°C qui présentent les caractéristiques décrites par les courbes ci-dessous.

Teflon® film-foil

Téflon® à armatures



www.exxelia.com - info@exxelia.com

Tel: + 33 (0)1 49 23 10 00

TA 72 RoHS = W

Sorties axiales Modèle TA 72

Teflon® is a trademard of Dupont de Nemours Téflon® marque déposée Dupont de Nemours

DIELECTRIC Teflon® film-foil TECHNOLOGY Non-inductive Metal case, non magnetic Glass sealed MARKING model

Axial leads

capacitance tolerance rated voltage date-code

DIÉLECTRIQUE Téflon® à armatures métalliques

TECHNOLOGIE Non inductif Tube métal, non magnétique Obturé par perles de verre MARQUAGE modèle capacité tolérance tension nominale date-code

GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Operating temperature		– 55°C + 200°C		Température d'utilisation
Dissipation factor		≤ 5.10 ⁻⁴		Tangente de l'angle de pertes
Insulation resistance	for C _R ≤ 0,22 μF	≥ 500000 MΩ	$pour C_R \le 0,22 \mu F$	Résistance d'isolement
	for $C_R > 0.22 \mu F$	\geq 100000 M Ω μ F	pour C _R > 0,22 μF	
	for C _R ≤ 0,22 μF	≥ 1000000 MΩ	$pour C_R \le 0.22 \mu F$	
	for $C_R > 0,22 \mu F$	≥ 200000 MΩ µ F	pour C _R > 0,22 μF	
Withstand voltage		1,6 U _{RC}		Tension de tenue
Insulation between leads and cas	se	≥ 500000 MΩ		Isolement entre bornes réunies et masse

APACITANCE VALU	ES AND RATED VOLTAGE	(D.C.)		VALEURS DE CAPACITE ET DE TENSION (L			
imensions (mm)			400 V				
L	D W		C _R	C _R			
18	6	0,6					
18	6	0,6					
18	6	0,6					
18	6	0,6					
18	8	0,6					
18	8	0,6					
22	8	0,6	4700 pF	470 pF			
22	8	0,6	6800 pF	680 pF			
22	8	0,6		1000 pF			
22	8	0,6		1500 pF			
22	8	0,6		2200 pF			
22	8	0,6		3300 pF			
22	10,5	0,6	10000 pF	4700 pF			
22	12,7	0,6	15000 pF	6800 pF			
30	10,5	0,8	22000 pF	10000 pF			
30	12,7	0,8	33000 pF	15000 pF			
35	12,7	0,8	47000 pF	22000 pF			
35	14,3	0,8	68000 pF	33000 pF			
35	17	0,8	0,1 <i>µ</i> F	47000 pF			
48	17	0,8	0,15 <i>µ</i> F	68000 pF			
48	17	0,8					
48	19	0,8	0,22 <i>µ</i> F	0,1 <i>µ</i> F			
48	25,5	0,8	0,33 <i>µ</i> F	0,15 <i>μ</i> F			
± 1	± 0,5	+10% - 0,05	± 20% - ± 10% -	± 5% - ± 2% - ± 1%			

Tolerances on dimensions / Tolérances dimensionnelles Capacitance tolerances / Tolérances sur capacité For intermediate value, the dimensions are those of the immediately superior value Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure

HOW TO ORDE EXEMPLE DE CODIFICATION À LA COMMANDE W: if complient RoHS Rated voltage (V_{DC}) Model Capacitance Capa. tolerance 250 V TA 72 1 μF ± 2% Tension nom. (V_{CC}) Tol. sur capa. ${\it W}$: si conforme RoHS Modèle Capacité

SUMMARY SOMMAIRE

General information on impregnated capacitors109	Généralités sur les condensateurs imprégnés
Impregnated capacitors data sheets	Feuilles particulières des condensateurs imprégnés

OF POLYPROPYLENE + IMPREGNA Commercial type	Standard reference	Capacitance	RÉPERTOIRE DES CONI Operatin Tensions d			
Appellation commerciale	Modèle normalisé	Capacité	U _{RC}	U _{RA}	Page Page	
PLP 8- PLP 80		0,5 μF-15 μF	2000 V _{CC} - 7000 V _{CC}	1000 V _{CA} - 3600 V _{CA}	111	
PLP 34- PLP 340		22 μF-10 μF	160 V _{CC} -10000 V _{CC}	75 V _{CA} - 3500 V _{CA}	112	
PLP4 - PLP 40		0,25 μF - 30 μF	630 V _{CC} - 2800 V _{CC}	400 V _{CA} - 1400 V _{CA}	113	
PLP5 - PLP 50 - PLP 51		0,1 <i>μ</i> F - 25 <i>μ</i> F	165 V _{CC} - 5000 V _{CC}	75 V _{CC} - 1800 V _{CA}	114-1	
BI 73 A - BI 73 R		1000 pF - 2,2 μF	1000 V _{CC} - 2200 V _{CC}	300 V _{cc} - 500 V _{cc}	116	
R 73 A - R 73 R		470 pF - 0,1 μF	Pulse rating / Régime d'	impulsion U _{CRETE} 5000 V	116	

GENERAL INFORMATION

GÉNÉRALITÉS

RECOMMENDATIONS FOR MOUNTING

Handling

Capacitors should not be handled by terminals or by connections. After use under D.C. voltage, it is advisable to short-circuit the connections as certain dielectrics keep a residual charge which might be dangerous during handling operations.

Mounting

Unless otherwise specified, it is preferable to use the fluid impregnated capacitors with the terminals pointed upwards.

 $\mbox{\sc A}$ free gap shall be allowed between battery-mounted capacitors.

Cables, bars or connecting braids shall be properly dimensioned to prevent any abnormal temperature rise of the terminals.

It is also preferable to connect battery-mounted capacitors by means of flexible cables or by braids.

RECOMMANDATIONS DE MONTAGE

Manipulation

Les condensateurs ne doivent pas être manipulés par les bornes ou les connexions. Après utilisation en tension continue, il est prudent de court-

circuiter celles-ci, certains diélectriques gardant une rémanence de charge qui peut être dangereuse lors des manipulations.

Montage

Sans demande particulière, il est préférable d'utiliser les condensateurs imprégnés liquide , bornes dirigées vers le haut. Il convient de laisser un espace libre entre les condensateurs montés en batterie.

Les câbles, barres ou tresses de raccordement doivent être correctement dimensionnés pour éviter un échauffement anormal des bornes.

De même, le raccordement des condensateurs en batterie se fait de préférence par des câbles souples ou par des tresses.

RECOMMENDED TORQUE VALUES		COUPLES DE SERRAGE RECOMMANDÉS
Aluminium tube mounting with threaded stud Fixation tube aluminium à téton fileté	Threaded outputs Sorties par tiges filetées	Threaded insert outputs Sorties par inserts filetés
M 8: 4 Nm M 12:10 Nm	M 5 : 2 Nm M 6 : 3,1 Nm M 8 : 7,5 Nm M10 :14,1 Nm	M 6 : 6 Nm M 8 :10 Nm

GENERAL INFORMATION *GÉNÉRALITÉS*

PAPER + POLYPROPYLENE CAPACITORS

Mixed paper + polypropylene foil capacitors are impregnated with biodegradable oil. They are supplied in sealed cylindrical or rectangular cases.

Insulating terminals fitted with solderable lugs, screw or threaded terminals ensure easy connection.

Depending on the application, various configurations of dielectric and impregnating materials are used to obtain optimum performance.

Mineral oil, silicon oil and synthetic oil are the most common oil types used by $\ensuremath{\mathbf{EXXELIATECHNOLOGIES}}.$

These capacitors are recommended when voltage, current and/or power constraints are particularly servere due to their:

- Resistance to voltage and to current impulses
- · Long service life
- Easy evacuation of internal temperature rises
- Low partial discharge level (ionisation).

The curves below show the main electrical characteristics versus temperature and frequency.

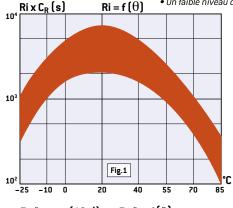
- Fig. 1 Insulation resistance change versus temperature.
- Fig. 2 Relative capacitance change versus temperature.
- Fig. 3 Loss angle tangent change versus temperature.
- Fig. 4 Loss angle tangent change versus frequency.

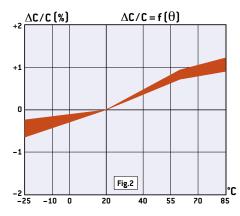
CONDENSATEURS PAPIER + POLYPROPYLÈNE

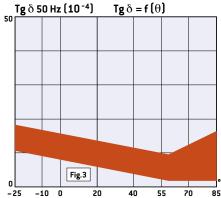
Les condensateurs mixtes papier + polypropylène à armatures métalliques sont imprégnés avec des huiles biodégradables. Ils se présentent en boîtiers étanches cylindriques ou parallélépipédiques.

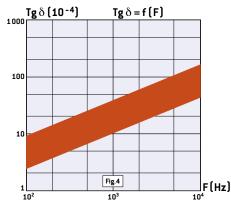
Des bornes isolantes équipées de cosses à souder, à visser ou de tiges filetées assurent une liaison aisée

En fonction de l'application, diverses combinaisons de diélectriques et d'imprégnants sont utilisées pour obtenir des performances optimales.


Les huiles minérales, les huiles silicones et les huiles de synthèse sont les plus couramment utilisées par **EXXELIA TECHNOLOGIES**.


Ces condensateurs sont recommandés lorsque les contraintes de tension, de courant et/ou de puissance sont particulièrement sévères car ils offrent :


- Une tenue aux impulsions de tension et de courant
- Une grande durée de vie
- Une facilité d'évacuation des échauffements internes
- Un faible niveau de décharges partielles (ionisation).


Les courbes ci-dessous donnent l'évolution des principales caractéristiques électriques en fonction de la température et de la fréquence.

- **Fig. 1 -** Évolution de la résistance d'isolement en fonction de la température.
- **Fig. 2 -** Variation relative de la capacité en fonction de la température.
- **Fig. 3 -** Évolution de la tangente de l'angle de pertes en fonction de la température.
- **Fig. 4 -** Évolution de la tangente de l'angle de pertes en fonction de la fréquence.

METALLIZED PAPER CAPACITORS

The use of self-healing metallized paper enables the manufacturing of compact capacitors. They are used for D.C. and A.C voltage. Their layout enables them to accept overvoltages for which the metal-foil film capacitors are not suited.

POLYPROPYLENE CAPACITORS

Polypropylene capacitors with "all-film" foil are impregnated with synthetic biodegradable oil. Extremely low losses allows very high reactive energy levels in small volumes. This type of capacitor is manufactured on request according to custom designs.

Handling

Capacitors should not be handled by terminals or by connections. After use under D.C. voltage, it is advisable to short-circuit the connections as certain dielectrics keep a residual charge which might be dangerous during handling operations.

Mounting

Unless otherwise specified, it is preferable to use fluid impregnated capacitors with the terminals pointed upwards.

A free gap shall be allowed between battery-mounted capacitors.

Cables, bars or connecting braids shall be properly dimensioned to prevent any anormal temperature rise of the terminals.

They shall be solid enough to help remove the calories (capacitors).

CONDENSATEURS PAPIER MÉTALLISÉ

L'utilisation de papier métallisé autocicatrisable permet de réaliser des condensateurs de faibles dimensions. Ils sont destinés aux tensions continues, comme aux tensions alternatives. Leur structure leur permet d'accepter des surtensions pour lesquelles les condensateurs films à armatures métalliques sont peu adaptés.

CONDENSATEURS POLYPROPYLÈNE

Les condensateurs polypropylène à armatures "tout film" sont imprégnés avec des huiles de synthèse biodégradables. Les pertes extrêmement faibles permettent d'atteindre des niveaux d'énergie réactive très élevés dans de faibles volumes. Ce type de condensateur est réalisé à la demande suivant cahier des charges.

Manipulation

Les condensateurs ne doivent pas être manipulés par les bornes ou les connexions. Après utilisation en tension continue, il est prudent de court-circuiter celles-ci, certains diélectriques gardant une rémanence de charge qui peut être dangereuse lors des manipulations.

Montage

Sans demande particulière, il est préférable d'utiliser les condensateurs imprégnés liquide, borne dirigées vers le haut. Il convient de laisser un espace libre entre les condensateurs montés en batterie.

Les câbles, barres ou tresses de raccordement doivent être correctement dimensionnés pour éviter un échauffement anormal des bornes.

Ils doivent être suffisamment massifs pour aider à extraire les calories.

www.exxelia.com - info@exxelia.com **110** Tel : + 33 (0)1 49 23 10 00 Page revised - Version 04/15

PLP 8 - PLP 80

RoHS = W

Dimensions of terminal lugs Dimensions cosses	d	I _{RA} (A)
8,5 x 8,5	4,2	25
8,5 x 8,5	4,2	25
20 x 20	8,5	40
20 x 20	8,5	50

DIELECTRIC

Polypropylene + paper impregnated with synthetic oil

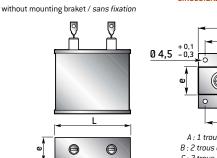
TECHNOLOGY Grey lacquered metal

case Leadscrew lugs

APPLICATIONS

Commutation, HF compensation, energy storage, rapid discharges...

ON REQUEST


Non magnetic case Position of lugs

CAPACITORS FOR SINEWAVE AND NON SINEWAVE A.C. VOLTAGES

CONDENSATEURS POUR TENSIONS ALTERNATIVES SINUSOÏDALES ET NON SINUSOÏDALES

PLP 80

with mounting braket / avec fixation

B - C A: 1 trou au centre pour L: 160 B: 2 trous entraxe 060 pour L: 195 C: 2 trous entraxe 100 pour L: 134 D: 3 trous entraxe 80 pour L: 190

MARKING

PLP 8

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

Polypropylène +papier imprégnés huile de synthèse

TECHNOLOGIE Boîtier métallique laqué gris Sorties par cosses à visser

APPLICATIONS

Commutation, compensation HF, stockage d'énergie, décharges rapides...

SUR DEMANDE

Boîtier amagnétique Orientation des cosses

MARQUAGE

modèle capacité tolérance tension nominale date-code

GENERAL CHARACTERISTICS		CARACTÉRISTIQUES GÉNÉRALES
Operating temperature	− 25°C + 85°C	Température d'utilisation
Dissipation factor	≤ 30.10 ⁻⁴	Tangente de l'angle de pertes
Insulation resistance	≥ 5000 MΩ µF	Résistance d'isolement
Withstand voltage	1,5 U _{RC}	Tension de tenue
Withstand voltage between leads and case	2 Ura + 1000V - 50 Hz	Tension de tenues entre bornes réunies et masse
For other characteristics see page 110		Autres caractéristiques voir page 110

Voltage / Tension U _{RC}	2000 V _{CC} 2500 V _{CC}								3000 V _{CC}												
Voltage / Tension U _{RA}															1500 V _{CA}						
Dimensions (mm) Capacité C _R	L	е	н	h	I _{RA} (1)	Q (2)	F(3)	L	е	н	h	I _{RA} (1)	Q (2)	F(3)	L		Н	h	I _{RA} (1)	Q (2)	F(3)
0,5 μF															60	30	75	35	20	1.84	390
1	60	30	75	35	20	1.66	380	95	30	65	35	20	2.49	363	95	30	75	35	25	2.81	278
2	95	30	80	35	20	2.85	285	95	30	100	35	25	3.55	254	95	30	135	35	25	5.05	224
3	95	30	100	35	25	3.30	227	95	30	135	35	25	4.75	217	134	42	105	35	25	6.55	183
5	95	30	150	35	25	4.88	192	134	42	115	45	40	5,27	171	134	47	130	35	25	8,34	136
6	134	42	105	45	40	4,49	178	134	47	115	45	40	5,66	149	134	52	130	60	40	7,13	118
8	134	47	115	45	40	5,31	150	134	47	150	45	50	6,66	138	134	57	150	60	50	7,91	103
10	134	47	130	45	40	6,01	132	134	52	150	45	50	7,11	115	134	62	170	60	50	9,50	94
12	134	52	150	45	50	6,61	129	134	62	150	45	50	7,82	103							
15	134	57	150	45	50	7,03	107														
Voltage / <i>Tension</i> U _{RC}	3500 V _{CC}					4000 V _{CC}								5000 V _{CC}							
Voltage / Tension U _{RA}				1800 V _{CA}							2000 V _{CA}							2500 V _{CA}			
0,5 μF	95	30	65	45	25	2,28	347	95	30	110	45	25	3,55	369	95	30	150	45	25	5.13	357
1	95	30	100	45	25	3,72	243	95	30	150	45	25	4,85	240	134	47	115	45	25	6,94	224
2	134	42	105	45	25	6,45	190	134	52	115	60	40	5,51	157	134	62	130	60	50	6,61	139
3	134	47	115	45	25	7,45	143	134	62	150	60	50	7,23	139	134	77	150	60	50	8,99	115
5	134	52	150	60	50	7,40	110	134	77	170	60	50	9,51	102							
6	134	62	150	60	50	8,28	99	190	67	160	60	50	11,56	99							
8	134	72	170	60	50	10,46	88														
Voltage / <i>Tension</i> U _{RC}				6000 V _{CC}							7000 V _{CC}										
Voltage / Tension U _{RA}				3000 V _{CA}							3600 V _C										
0,5 μF	134	42	105	55	25	6.42	274	134	42	130	55	25	7.79	225							
1	134	57	130	60	50	6,58	184	134	62	150	60	50	8,26	149							
2	134	77	170	60	50	10,91	131	190	67	160	60	50	13,19	106							
3	190	67	160	60	50	13,25	102														

(1) I_{RA}: RMS current in amperes / Courant efficace admissible en ampères

(3) F: Frequency in Hz in sinewave charge for U_{RA} and an ambient temperature of 55°C Fréquence en Hz en régime sinusoïdal pour U_{RA} et une température ambiante de 55°C For intermediate value, the dimensions are those of the immediately superior value

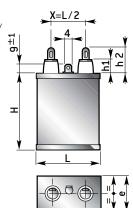
(2) Q : Reactive power in kVAR with I_{RA} for an ambient temperature of 55°C

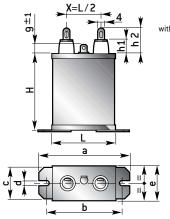
Puissance réactive en kVAR avec I_{RA} pour une température ambiante de $55^{\circ}\mathrm{C}$

Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure

		EXEMPLE DE CODI	FICATION À LA COMMANDE
W: if complient RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})
_	10 µF	± 10%	2500 V
W: si conforme RoHS	Capacité	Tol. sur capa.	Tension nom. (V _{CC})
	-	– 10 μF	W: if complient RoHS Capacitance Capa. tolerance − 10 μF ± 10%

D.C. voltage $U_{RC}(V_{DC})$ Tension continue $U_{RC}(V_{CC})$	Peak voltage U _C Tension crête admissible U _C
2000 V	2500 V
2500 V	3000 V
3000 V	3700 V
3500 V	4600 V
4000 V	5000 V
5000 V	6000 V
6000 V	7500 V
7000 V	9000 V




PLP 34- PLP 340

RoHS = W

PLP 34 without mounting braket / sans fixation

PLP 340 with mounting braket / avec fixation

Dimensions of brakets for capacitors plp 30/340 Dimensions des fixations des condensateurs PLP 30/340

L	е	a	b	С	d
30	20	50	40	16	4,2
45	25	65	55	20	4,2
60	30	85	75	25	5,5
60	45	85	75	40	5,5
95	45	120	110	40	5,5
95	60	120	110	50	5,5
115	95	140	130	85	5.5

DIELECTRIC

Polypropylene + paper oil-impregnated

TECHNOLOGY

Grey lacquered metal case Solderable terminal lug outputs

APPLICATIONS

PLP34/340 - Comutation, HF compensation, energy storage, rapid discharges Motor run, filtering

MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

Polypropylène + papier imprégnés huile

TECHNOLOGIE

Boîtier métallique laqué gris Sorties par cosses à souder

APPLICATIONS

Tension U_{RC}

≤ 1000 V

1600 V

2500V

4000V

6300V

10000V

PLP34/340 - Commutation, compensation HF, stockage d'énergie, décharges rapides Phase auxiliaire moteur, filtrage

Dimensions of terminals (mm)

Dimensions des bornes (mm)

h1

12,5

16

19

28

36

h2 max

20

30

30

40

50

70

MARQUAGE

modèle capacité tolérance tension nominale date-code

GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Operating temperature		− 25°C + 85°C		Température d'utilisation
Dissipation factor at 1 kHz	• for CR < 1μ F and $U_{RC} \le 2500 V_{DC}$	≤ 35.10 ⁻⁴	• pour $C_R < 1 \mu F$ et $U_{RC} \le 2500 V_{CC}$	Tangente de l'angle de pertes à 1 kHz
Dissipation factor at 50 Hz	• for CR < 1μ F and $U_{RC} > 2500 V_{DC}$	≤ 35.10 ⁻⁴	• pour C_R < 1 μ F et U_{RC} > 2500 V_{CC}	Tangente de l'angle de pertes à 50 Hz
	• for C _R ≥ 1 μF	≤ 40.10 ⁻⁴	• pour C _R ≥ 1 µF	
Insulation resistance	• for C _R ≤ 0,3 μF	\geq 9 000 M Ω	• pour $C_R \le 0.3 \mu\text{F}$	Résistance d'isolement
	• for $C_R > 0.3 \mu\text{F}$	≥ 3000 MΩ <i>μ</i> F	• pour C _R > 0,3 μF	
Withstand voltage between leads and case	• for $U_{RC} \le 2000 V_{DC}$	2,5 U _{RC}	• pour U _{RC} ≤ 2000 V _{CC}	Tension de tenue entre bornes réunies et masse
	• for $U_{RC} > 2000 V_{DC}$	2 U _{RC} + 1 000 V	• pour U _{RC} > 2000 V _{CC}	
Insulation between leads and case		9000 MΩ		Isolement entre bornes réunies et masse
Frequency of use		see / voir F(1)		Fréquence d'utilisation
For other characteristics see page 110				Autres caractéristiques voir page 110

CAPACITANCE VALU	ES AND	RATE	VOLTA	GE (I	D.C.)																						VALE	URS	DE CA	PACI	TE ET	DE T	ENSIC	ON (U _R	c)
Voltage / Tension U _{RC}		160 V _{CC}			250) V _{CC}			630	V _{CC}			100	O V _{CC}			160	O V _{CC}			250	O V _{CC}			4000	O V _{CC}			6300	O V _{CC}			1000	O V _{CC}	
Voltage / Tension U _{RA}		75 V _{CA}			110	VCA			300	V _{CA}			400	V _{CA}			500) V _{CA}			850	VCA			1500) V _{CA}			2200	O V _{CA}			350	O V _{CA}	
Dimensions (mm) Capacité C _R	L	e H	F (1)	L	е	н	F (1)	L	е	н	F (1)	L	е	н	F(1)	L	е	Н	F (1)	L	е	н	F (1)	L	е	н	F (1)	L	е	Н	F (1)	L	е	Н	(1)
22 nF																												60	30	66	500				
47																								45	25	66	500	60	45	66	410				
100																				45	25	56	500	60	30	66	330	60	45	96	250	95	60	146	220
220												30	20	46	500	45	25	56	500	60	30	66	500	60	45	86	230	95	60	96	190	115	95	146	150
470								30	20	46	500	45	25	56	500	60	30	56	500	60	45	86	470	95	45	116	190	95	60	146	120	115	95	216	95
1 <i>µ</i> F				45	25	34	500	45	25	56	500	60	30	56	400	60	45	66	360	95	45	96	240	95	60	146	120	115	95	146	85				
2,2				45	25	56	500	60	30	56	330	60	45	66	260	95	45	96	300	95	60	146	170	115	95	146	80								
4,7				60	45	56	500	60	45	86	270	95	45	96	220	95	60	116	190	115	95	146	120												
10	60	45 86	500					95	45	116	220	95	60	116	140	115	95	146	160																
Tolérances dim. (mm)	± 1 =	± 1 ±	1	± 1	± 1	± 1		± 1	± 1	± 1		± 1	± 1	± 1		± 1	± 1	± 1		± 1	± 1	± 1		± 1	± 1	± 1		± 1	± 1	± 1		± 1	± 1	± 1	

 \pm 10 % \pm 5 % - Capacitance tolerances / Tolérances sur capacité

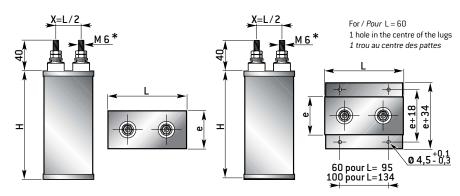
(1) Rated frequency in Hz For intermediate value, the dimensions are those of the immediately superior value (1) Fréquence nominale en Hz

Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure

HOW TO ORDER			EXE	MPLE DE CODIFICATION À LA COMMANDE
Model	W: if complient RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})
PLP 34	_	220 nF	± 10%	4000 V
Modèle	W : si conforme RoHS	Capacité	Tol. sur capa.	Tension nom. (V _{CC})

112 www.exxelia.com - info@exxelia.com Tel:+33 (0)1 49 23 10 00 Page revised - Version 04/15

PLP 4 - PLP 40


RoHS = W

CAPACITORS FOR SINEWAVE AND NOT SINEWAVE A.C. VOLTAGES **CONDENSATEURS POUR TENSIONS ALTERNATIVES** SINUSOÏDALES ET NON SINUSOÏDALES

PLP 4 without mounting braket / sans fixation

PLP 40 with mounting braket / avec fixation

Tightening torque: M 4 = 0,96 N.m Couple de serrage : M 6 = 3,1 N.m

- * On request : M 4 leads or by tags
- *Sur demande : sorties M 4 ou par languettes

DIELECTRIC

Polypropylene + paper oil-impregnated

TECHNOLOGY

Grey lacquered metal Threaded outputs M 6

APPLICATIONS

Commutation, HF compensation, energy storage, rapid discharges...

MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

Polypropylène + papier imprégnés huile

TECHNOLOGIE

Boîtier métallique laqué gris Sorties par tiges filetées M 6

APPLICATIONS Commutation, compensation HF, stockage d'énergie, décharges rapides...

MARQUAGE modèle capacité tolérance tension nominale date-code

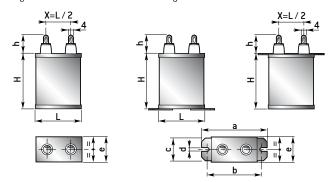
GENERAL CHARACTERISTICS		CARACTÉRISTIQUES GÉNÉRALES
Operating temperature	− 25°C + 85°C	Température d'utilisation
Dissipation factor at 100 kHz	≤ 35.10 ⁻⁴	Tangente de l'angle de pertes à 100 kHz
Withstand voltage	2,15 U _{RC}	Tension de tenue
Withstand voltage between leads and case	2 U _{RA} + 1000 V - 50 Hz	Tension de tenue entre bornes réunies et masse
For other characteristics see page 110		Autres caractéristiques voir page 110

Voltage / Tension U _{RC}		con	V _{CC}		Ė	710	V _{CC}			1000	ı v			1400	ıv.			100	D V _{CC}			2000	ıv			2500	n V			2800	ı v	
Voltage / Tension U _{RA}		400	VCA			500	VCA			630	V _{CA}			700	V _{CA}			800	V _{CA}			1000) V _{CA}	,		1250	J V _{CA}			1400	J V _{CA}	
Dimensions (mm) Capacité C _R	L	е	Н	F(1)	L	е	Н	F(1)	L	е	н	F(1)	L	е	Н	F(1)	L	е	Н	F(1)	L	е	Н	F(1)	L	е	н	F(1)	L	е	Н	F(1
0,25 <i>μ</i> F																													60	76	30	340
0,5																					60	76	30	350	60	96	30	260				
1													95	76	30	475	60	76	30	280	95	76	30	240	95	116	30	220	95	146	30	210
2					60	76	30	340	60	96	30	270	95	116	30	365													134	140	42	150
2,2																					95	146	30	200								
3	60	76	30	375	60	96	30	290	95	116	30	240	95	116	45	270	95	116	30	190					134	140	47	130	134	165	47	120
4													95	146	45	250	95	146	30	175					134	160	47	110	134	165	57	100
5	95	76	30	300									134	140	42	245					134	140	47	125	134	160	62	100				
6					95	116	30	245					134	140	52	220					134	160	47	125								
8													134	160	57	190	134	140	47	125	134	160	62	100								
10	95	116	30	230					134	140	42	155					134	160	47	115												
12																	134	160	57	100												
14	95	116	45	180																												
15					134	140	42	165	134	160	47	125																				
20					134	160	47	145	134	160	62	100																				
22	134	140	42	175																												
25	134	140	47	160	134	160	57	125																								
30	134	140	57	140																												
olérances dim. (mm)	± 1	2 ·1	± 1		± 1	2 - 1	± 1		± 1	 2 · 1	± 1		± 1	- 2 - 1	± 1		± 1	. 2 . 1	± 1		± 1	- 2 - 1	± 1		± 1	2 - 1	± 1		± 1	2 · 1	± 1	

± 10 % ± 5 % - Capacitance tolerances / Tolérances sur capacité

(1) Rated frequency in Hz (1) Fréquence nominale en Hz Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure For intermediate value, the dimensions are those of the immediately superior value

HOW TO ORDER			EXE	MPLE DE CODIFICATION À LA COMMANDE
Model	W: if complient RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})
PLP 4	-	6 μF	± 10%	2000 V
Modèle	W: si conforme RoHS	Capacité	Tol. sur capa.	Tension nom. (V_{CC})


PLP 5 - PLP 50 - PLP 51

RoHS = W

 $\textbf{PLP 5} \ without mounting \ braket \textit{/ sans fixation} \ \ \textbf{PLP 50} \ with \ mounting \ braket \textit{/ avec fixation}$

PLP 51 without mounting braket / sans fixation

Dimensi	ons of b	orakets	for cap	pacitors	s PLP 5	0 and l	PLP 51									Di	mensio	ons des	fixatio	ns des	conde	nsateu	rs PLP	50 et F	² LP 51
L			30						4	-5					6	0				90				120	
е	10	15	20	25	30	20	25	35	40	45	55	60	65	40	50	60	70	60	70	80	90	100	70	80	100
a	50 65											8	5				115				145				
b	40							5	5					7	5				105				135		
С	c 8 13 16 20 25 16 20 30 35 40 45							50	55	35	40	50	60	50	60	70	80	90	60	70	90				
d	4.2 4.2									5.	.5				5.5				5.5						

Polypropylene + paper oil-impregnated

TECHNOLOGY

Grey lacquered metal case Leads by solderable terminal lugs

APPLICATIONS

Use for D.C. or A.C. current 50 Hz Filtering of A.C. rectified current

MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

Polypropylène + papier imprégnés huile

TECHNOLOGIE

Boîtier métallique laqué gris Sorties par cosses à souder

APPLICATIONS

Utilisation en courant continu ou alternatif 50 Hz Filtrage de courant alternatif redressé

MARQUAGE

modèle capacité tolérance tension nominale date-code

GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Operating temperature		− 25°C + 85°C		Température d'utilisation
Dissipation factor at 1 kHz				Tangente de l'angle de pertes à 1 kHz
	for $C_R \le 1 \mu\text{F}$ and $U_{RC} \le 2500V_{DC}$	≤ 10.10 ⁻³	$pour C_R \le 1 \mu F$ et $U_{RC} \le 2500 V_{CC}$	
Dissipation factor at 100 kHz		≤ 10.10 ⁻³		Tangente de l'angle de pertes à 100 kHz
Insulation resistance		≥ 3000 MΩ. µ F		Résistance d'isolement
Withstand voltage		3 U _{RC}		Tension de tenue
Withstand voltage between leads and case		3 U _{RC}		Tension de tenue entre bornes réunies et masse
Insulation between leads and case		≥ 12000 MΩ		Isolement entre bornes réunies et masse

Voltage / Tension URC			V _{CC}			250) V _{CC}			Enr	V _{CC}			100	O V _{rr}			CITE ET D	O V _{CC}	· ner
Voltage / Tension U _{RA}			V _{CA}				V _{CA}			300					V _{CA}			500		
Dimensions (mm) Capacité C _R	L	е	Н	h	L	e	Н	h	L	e	Н	h	L	e	Н	h	L	е	Н	h
0,1 <i>μ</i> F									30	10	30	14	30	15	30	14				
0,25					30	10	30	14	30	15	30	14	30	30	30	14	45	20	50	24
0,5	30	15	30	14	30	20	30	14	30	25	30	14	45	20	50	14	45	40	50	24
1	30	25	30	14	30	30	30	14	45	20	50	14	45	35	50	14	60	40	80	24
2					45	20	50	14	45	40	50	14	45	45	80	14	60	40	115	24
3	45	25	50	14	45	35	50	14	45	40	80	14	60	40	115	24	60	60	115	24
4	45	35	50	14	45	45	50	14	45	55	80	14	60	50	115	24	90	60	115	24
5	45	45	50	14	45	55	50	14	45	65	80	14	60	50	115	24	90	60	115	24
6	45	55	50	14	45	55	80	14	60	40	115	24	60	60	115	24	90	70	115	24
8	45	45	80	14	45	60	80	14	60	50	115	24	90	60	115	24	90	90	115	24
10	45	55	80	14	45	65	80	14	60	60	115	24	90	70	115	24	90	80	175	24
12									60	70	115	24	90	90	115	24	90	90	175	24
15									90	60	115	24	90	100	115	24	120	80	175	24
20									90	70	115	24	120	70	175	24	120	100	175	24
25									90	90	115	24	120	80	175	24				
Tolérances dim. (mm)	± 1	± 1	+ 2	max	± 1	± 1	+2	max	± 1	± 1	+ 2 - 1	max	± 1	± 1	+2	max	± 1	± 1	+2	max

 \pm 10 % - Capacitance tolerances / Tolérances sur capacité

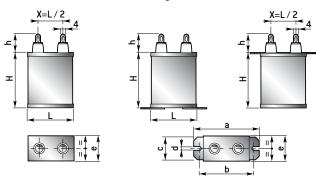
For intermediate value, the dimensions are those of the immediately superior value

Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure

HOW TO ORDER			EXE	MPLE DE CODIFICATION À LA COMMANDE
Model	W: if complient RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{DC})
PLP 5	_	5 μF	± 10%	1000 V
Modèle	W : si conforme RoHS	Capacité	Tol. sur capa.	Tension nom. (V _{CC})

114 www.exxelia.com - info@exxelia.com Tel:+33 (0)1 49 23 10 00 Page revised - Version 04/15

PLP 5 - PLP 50 - PLP 51


RoHS = W

PLP 5 without mounting braket / sans fixation

 $\textbf{PLP 50} \ \text{with mounting braket} \ \textit{/} \ \textit{avec fixation}$

 $\textbf{PLP 51} \ \text{without mounting braket} \ \textit{/} \ \textit{sans fixation}$

Dimension	Dimensions of brakets for capacitors PLP 50 and PLP 51										Din	nensions d	les fixatio	ns des con	densateui	rs PLP 50	et PLP 51
L	4	5		6	0				90					12	20		
е	20	35	40	45	50	70	60	80	90	100	120	90	100	120	140	160	180
a	6	5		8	5				115			145					
b	5	5		7	5				105					13	35		
С	16	30	35	40	40	60	50	70	80	90	110	80	90	110	130	150	170
d	4	2		5	5				5.5	5.5				5	5		

DIELECTRIC

Polypropylene + paper oil-impregnated

TECHNOLOGYGrey lacquered metal case Leads by solderable terminal lugs

APPLICATIONS

Use for D.C. or A.C. current 50 Hz Filtering of A.C. rectified current

MARKING

model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE

Polypropylène + papier imprégnés huile

TECHNOLOGIE Boîtier métallique laqué

gris Sorties par cosses à souder

APPLICATIONS

Utilisation en courant continu ou alternatif 50 Hz Filtrage de courant alternatif redressé

MARQUAGE

modèle capacité tolérance tension nominale date-code

GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Operating temperature		− 25°C + 85°C		Température d'utilisation
Dissipation factor at 1 kHz				Tangente de l'angle de pertes à 1 kHz
	for $C_R \le 1 \mu\text{F}$ and $U_{RC} \le 2500V_{DC}$	≤ 10.10 ⁻³	pour $C_R \le 1 \mu\text{F}$ et $U_{RC} \le 2500 V_{CC}$	
Dissipation factor at 100 kHz		≤ 10.10 ⁻³		Tangente de l'angle de pertes à 100 kHz
Insulation resistance		≥ 3000 MΩ. µ F		Résistance d'isolement
Withstand voltage		3 U _{RC}		Tension de tenue
Withstand voltage between leads and case		3 U _{RC}		Tension de tenue entre bornes réunies et masse
Insulation between leads and case		≥ 12000 MΩ		Isolement entre bornes réunies et masse

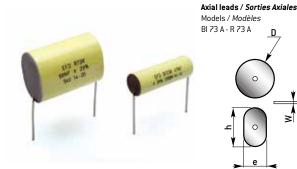
CAPACITANCE VALUE	ES AND R	ATED VOL	TAGE (D.	C.)												VALEURS	DE CAPA	CITE ET D	E TENSIO	N (U _{RC})
Voltage / Tension U _{RC}		200	O V _{CC}			250	2500 V _{CC} 3000 V _{CC}						400	O V _{CC}			500	o v _{cc}		
Voltage / Tension U _{RA}		720	V _{CA}			850	V _{CA}			1100	D V _{CA}		1500 V _{CA}					1800 V _{CA}		
Dimensions (mm) Capacité C _R	L	е	Н	h	L	е	Н	h	L	е	Н	h	L	е	н	h	L	е	Н	h
0,1 μF	45	20	50	24					45	20	80	34					60	40	80	50
0,25	45	20	80	24	45	35	80	34	60	40	80	34	60	40	115	34	60	50	115	50
0,5	45	35	80	24	60	40	80	34	60	40	115	34	90	60	115	34	90	60	175	50
1	60	40	115	24	60	45	115	34	60	70	115	34	90	60	175	34	90	80	175	50
2	60	70	115	24	90	60	115	34	90	60	175	34	90	100	175	34	120	120	175	50
3	90	60	115	24	90	90	115	34	90	80	175	34	120	120	175	34	120	160	175	50
4	90	80	115	24	90	80	175	34	90	100	175	34	120	140	175	34				
5	90	100	115	24	90	90	175	34	120	90	175	34	120	180	175	34				
6	90	80	175	24	90	120	175	34	120	120	175	34								
8	90	100	175	24	120	100	175	34	120	140	175	34								
10	120	90	175	24	120	120	175	34	120	180	175	34								
12	120	100	175	24																
Tolérances dim. (mm)	± 1	± 1	+ 2 - 1	max	± 1	± 1	+ 2 - 1	max	± 1	± 1	+ 2 - 1	max	± 1	± 1	+ 2 - 1	max	± 1	± 1	+ 2 - 1	max

± 10 % - Capacitance tolerances / Tolérances sur capacité

For intermediate value, the dimensions are those of the immediately superior value

Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure

Model W: if complient RoHS Capacitance Capa. tolerance PLP 50 - 10 µF ± 10%	Rated voltage (V _{DC})
PLP 50 – 10 µF ± 10%	
	2500 V
Modèle W: si conforme RoHS Capacité Tol. sur capa.	Tension nom. (V _{CC})


Radial leads / Sorties radiales

Models / Modèles

BI 73 R - R 73 R

BI 73 - R 73

RoHS = W

DIELECTRIC BI 73 bi-film self-healing, wax-impregnated

R 73 Polyester + foil TECHNOLOGY Polyester wrapped

UL VO)

OPTIONAL FEATURE Flame retardant (as per classification

MARKING model capacitance tolerance rated voltage date-code

DIÉLECTRIQUE B 73 bi-film imprégné cire

Autocicatrisable R 73 Polyester + armatures

>30

Data sheet on request.

Please consult our Sales Department.

Fiche technique sur demande.

Consulter notre Service Commercial.

TECHNOLOGIE Enrobé polyester Obturé résine époxy

OPTION

D

Auto-extinguible (suivant classification UL VO)

MARQUAGE modèle

capacité tolérance tension nominale date-code

Epoxy resin sealed		Obturé ré:	sine époxy	
GENERAL CHARACTERISTICS				CARACTÉRISTIQUES GÉNÉRALES
Operating temperature		− 25°C + 85°C		Température d'utilisation
Capacitance range (BI 73)		1 nF - 2,2 μF		Gamme de capacités (BI 73)
(R 73)		470 pF - 0,1 <i>µ</i> F		(R 73)
Capacitance tolerances		± 20 % - ± 10 %		Tolérances sur capacité
Rated voltage (BI 73)		1000 V _{CC} - 2200 V _{CC}		Gammes de tensions (BI 73)
		300 V _{CA} - 500 V _{CA}		
Rated voltage (R 73)		5000 V _{CR}		Tension nominale (R 73)
D. F. Tg δ at 1 kHz	for C _R ≤ 1 μF	≤ 100.10 ⁻⁴	pour C _R ≤ 1 μF	Tg δ à 1 kHz
D. F. Tg δ at 100 kHz	for $C_R > 1 \mu F$	≤ 100.10 ⁻⁴	pour C _R > 1 μF	Tg δ à 100 kHz
Insulation resistance	for C _R ≤ 0,22 μF	≥ 10000 MΩ	pour C_R ≤ 0,22 μ F	Résistance d'isolement
	for C _R > 0,22 μF	≥ 2000 MΩ μ F	pour C _R > 0,22 μF	
Test voltage		1,25 U _{RC} /1 mm		Tension de tenue
Insulation between leads and case		10000 MΩ		Isolement entre bornes réunies et masse

Ilisulation between it	caus an	iu casc								1000	O M 22								13010	JIIICIII C	IIII C DOI	nes reu	110300	Hasse
CAPACITANCE VALUE	S AND	RATED V	OLTAGE	(D.C.)															VALEUR	RS DE CA	PACITE	ET DE T	ENSION	(U _{RC})
									BI 73 A	- BI 73 F	₹										R 73 A	- R 73 R		
Voltage / Tension U _{RC}			100	O V _{CC}					150	O V _{CC}					220	o v _{cc}			Régime d'impulsion					
Voltage / Tension U _{RA}			300	O V _{CA}					380	O V _{CA}			500 V _{CA}					U _{crête} 5000 V						
Dimensions (mm)	L	h		е	Х	W	L	h		е	Х	W	L	h		е	X	W	L	h		е	Х	W
Capacité C _R																								
470 pF																			15			5	16	0,6
680																			15			6	16	0,6
1 nF													15			5	16	0,6	15			7	16	0,6
1,5													15			6	16	0,6	15			8	16	0,6
2,2							15			5	16	0,6	15			7	16	0,6	19			8	20	0,8
3,3							15			6	16	0,6	15			8	16	0,6	19			9	20	0,8
4,7	15			5	16	0,6	15			7	16	0,6	19			8	20	0,8	19			10	20	0,8
6,8	15			6	16	0,6	15			8	16	0,6	19			9	20	0,8	27			8	28	0,8
10	15			7	16	0,6	19			8	20	0,8	19			10	20	0,8	27			10	28	0,8
15	15			8	16	0,6	19			9	20	0,8	27			8	28	0,8	27			12	28	0,8
22	19			8	20	0,8	27			10	20	0,8	27			10	28	0,8	32			12	33	1
33	19			9	20	0,8	27			8	28	0,8	27			12	28	0,8	32			14	33	1
47	19			10	20	0,8	27			10	28	0,8	32			12	33	1	32			17	33	1
68	27			8	28	0,8	32			12	28	0,8	32			14	33	1	32	24	16		33	1
100	27			10	28	0,8	32			12	33	1	32			17	33	1	32	32	22		33	1
150	27			12	28	0,8	32			14	33	1	32	24	16		33	1						
220	32			12	33	1	32			17	33	1	32	27	19		33	1						
330	32			14	33	1	32	24	16		33	1	32	32	22		33	1						
470	32			17	33	1	32	27	19		33	1	32	36	26		33	1						
680	32	24	16		33	1	32	32	22		33	1												
1 μF	32	27	19		33	1	32	36	26		33	1												
1,5	32	32	22		33	1																		
2,2	32	36	26		33	1																		
Tolérances dimmensionnelles (mm)	± 2	± 2	± 2	± 2	± 2	+10% - 0,05	± 2	± 2	± 2	± 2	± 2	+10% - 0,05	± 2	± 2	± 2	± 2	± 2	+10% - 0,05	± 2	± 2	± 2	± 2	± 2	+10% - 0,05

 \pm 20% - \pm 10% - \pm 5% / Capacitance tolerances / Tolérances sur capacité

For intermediate value, the dimensions are those of the immediately superior value

Toute valeur intermédiaire est exécutée dans les dimensions de la valeur immédiatement supérieure

HOW TO ORDER				EXEMPLE	DE CODIFICATION À LA COMMANDE
Model	UL: Optional feature flame retardant	W: if complient RoHS	Capacitance	Capa. tolerance	Rated voltage (V _{AC})
BI 73 A	-	-	22 nF	± 20%	2200 V
Modèle	UL : Option auto-extinguible	W: si conforme RoHS	Capacité	Tol. sur capa.	Tension nom. (V _{CA})

116 www.exxelia.com - info@exxelia.com Tel:+33 (0)1 49 23 10 00 Page revised - Version 04/15

SUMMARY SOMMAIRE

Pa Pa		Operating voltage / Ten	Capacitance Capacité	Standard reference Modèle normalisé	Commercial type
	U _{RA}	U _{RC}	·		
12	-	63 V - 300 V	4,7 pF - 4700 pF		CA 15
12	=	63 V - 500 V	4,7 pF - 15 nF	=	CA 20
12	=	500 V	470 pF - 3300 pF	=	CA 30
12	_	300 V - 500 V	3300 pF - 15 nF		CA 35
12	_	300 V - 500 V	3300 pF - 15 nF		CA 40
12	_	63 V - 160 V	220 pF - 680 pF		CA 152
12	=	63 V - 250 V	220 pF - 1500 pF	=	CA 154
12	=	250 V - 400 V	2200 pF - 10 nF	=	CA 155
12	-	160 V - 250 V	5600 pF - 15 nF	-	CA 156
17	-	63 V - 500 V	2700 pF - 4700 pF	-	CA 157
17	_	63 V - 500 V	2700 pF - 4700 pF	_	CA 158
122	=	100 V - 500 V	200 pF - 390 pF	=	CM 04
122	=	500 V	270 pF - 390 pF	=	CM 05
122	-	500 V	430 pF - 4700 pF	-	CM 06
122	-	500 V	5100 pF - 12000 pF	-	CM 07
122	-	100 V - 500 V	200 pF - 390 pF	-	CM 09
122	_	500 V	270 pF - 390 pF	_	CM 10
122	_	500 V	430 pF - 4700 pF	_	CM 11
122	=	500 V	5100 pF - 12000 pF		CM 12
122	-	100 V - 500 V	200 pF - 390 pF		CMR 04
122	=	500 V	270 pF - 390 pF	=	CMR 05
122	=	500 V	430 pF - 4700 pF	=	CMR 06
122	_	500 V	5100 pF - 12000 pF	-	CMR 07
12	_	63 V	4,7 pF - 1200 pF		MF 1
12	_	250 V	4,7 pF - 4700 pF	_	MF 2
12		500 V - 1000 V	4,7 pF - 12 nF		MF 3
12	_	250 V - 500 V	4,7 pF - 12 nF		MF 4
12	=	250 V - 1000 V	4,7 pF - 33 nF		MF 5
12		500 V - 5000 V	10 pF - 22 nF		CA 1
12		500 V - 5000 V	1000 pF - 100 nF		CA 2
12		500 V - 2000 V	1500 pF - 100 nF		CA 2 L
12		300 V - 500 V	4,7 pF - 1000 pF		CA 17
12		500 V - 1000 V	4,7 pF - 1500 pF		CA 18
12		500 V - 1000 V	390 pF - 22 nF		CA 19

Tel:+33 (0)1 49 23 10 00

GENERAL INFORMATION GÉNÉRALITÉS

PROPERTIES OF MICA CAPACITORS

Capacitors with mica dielectric are noted for their excellent characteristics such as: temperature performance, low loss at all frequencies, high dielectric strenght and stability over time. Due to this they are recommended for use in filtering circuits, delay line circuits, oscillators, pulse circuits, H.F. generators, emission lines, D.C. blocking circuits, coupling, measurement etc.

Principle standards - CCTU 0201B - CECC 31300 / CECC 31301- NF C 83120 .

The above specifications cover fixed mica dielectric capacitors with a CR X $100\,000$ pF, a reactive power < 10 kvar and working voltage of no higher than $300\,V$.

NOMINAL VALUES AND CHARACTERISTICS

Climatic category and applicable limits.

The EXXELIA TECHNOLOGIES capacitors (trade mark «Lafab»), which meet the above standards, are tested to the strictest limits imposed by the specifications (see table 1).

Classes and max. température coefficients.

The temperature coefficient values and associated capacitance limits are given in table 2.

PROPRIÉTÉS DES CONDENSATEURS MICA

Les condensateurs à diélectrique mica présentent des propriétés remarquables : excellente tenue en température, faibles pertes à toutes les fréquences, rigidité diélectrique élevée, très grande stabilité dans le temps. En raison même de leurs qualités particulières, leur emploi est conseillé dans les circuits de filtres et de liaison, lignes à retard, circuits oscillants, circuits d'impulsion, générateurs HF, chaînes d'émission, blocage de tension continue, découplages, étalons de mesure, etc.

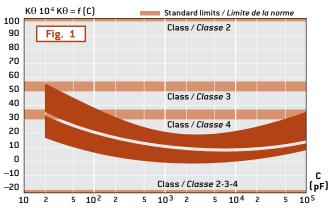
Principales spécifications des normes CCTU 0201B - CECC 31300/CECC 31301-NF C 83120.

Les spécifications de ces normes couvrent le domaine des condensateurs fixes à diélectrique, mica CRX 100 000 pF, de puissance réactive < 10 kvar et de tension de service ne dépassant pas 300 V.

VALEURS NOMINALES ET CARACTÉRISTIQUES Catégories climatiques et sévérités applicables.

Les condensateurs EXXELIA TECHNOLOGIES (marque déposée «Lafab») répondant aux spécifications des normes ci-dessus sont couramment réalisés avec les caractéristiques de plus fortes sévérités actuellement indiquées en feuilles particulières (voir tableau 1).

Classes et coefficients de température max.


Les valeurs du coefficient de température et les dérives de capacité qui y sont associées sont données dans le tableau 2.

Climatic category Catégorie climatique	Cold Froid T 1	Dry heat Chaleur sèche T 2	Damp heat (continuous test) Chaleur humide (essai continu)
424 (55/155/56)	– 55°C	+155°C	56 days / jours
435 (55/125/21)	– 55°C	+125°C	21 days / jours
434 (55/125/56)	− 55°C	+125°C	56 days / jours
454 (55/085/56)	− 55°C	+ 85°C	56 days / jours

Table 1 (according to CEI 68-1)
Tableau 1 (suivant CEI 68-1)

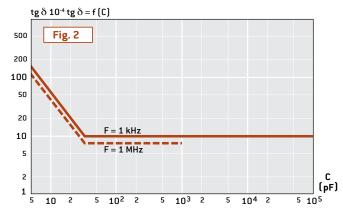

Class Classe	Temperature coefficient Coefficient de température (ppm/°C)	Limit of C _R after temperature cycle Limite dérive de C _R après cycle thermique
4*	- 20 + 30	\pm (0,05% + 0,1 pF)
3	- 20 + 50	± (0,05% + 0,1 pF)
2	- 20 + 100	± (0,1% + 0,1 pF)
1	- 200 + 200	$\pm (0,5\% + 0,1 \text{ pF})$

Table 2 *Capacitor manufactured on request
Tableau 2 Condensateurs réalisés sur demande

Temperature coefficient versus capacitance (typical value)

Evolution du coefficient de température en fonction de la capacité (valeur typique)

Max. dissipation factor
Tangente de l'angle de pertes (valeur maximale)

GENERAL INFORMATION GÉNÉRALITÉS

TERMINOLOGY

Rated capacitance (C_R) .

Preferred values as per CEI 63 are used.

Rated capacitance tolerances.

See table 3 for preferred values.

Rated voltage (U_R).

Rated voltage is the maximum D.C. voltage continuously applicable to the terminals of a capacitor, preferential values:

63 V - 100 V - 160 V - 250 V - 400 V - 500 V - 630 V - 1000 V - 1600 V - 2 000 V - 2 500 V - 3 000 V.

Other categories of capacitors

As well as manufacturing to the NF C 83120 standard, EXXELIA TECHNOLOGIES supply capacitors for the same applications manufactured to EUROPEAN or AMERICAN standards such as MIL C 5 ou MIL PRF 39001. Custom built capacitors, «button style» capacitors, mica power capacitors, pulse capacitors or SMD devices can be provided to customer specification.

QUALITY/RELIABILITY

The procedures established by the Quality Department comply with the requirements of the ISO 9001 & EN 9100 standards. Test equipments and highly trained personnel assure the quality and tracability of raw materials and finished product.

- Electron scanning microscope
- Infrared spectrophotometry
- · Differential thermical analysis
- Viscometers
- Metallographic microscopes
- X-ray photography
- Gas-phase chromatography
- Temperature test benches
- Vibration/shock test benches
- Automatic test benches (Capa, Tg d, Ri in ageing).

This equipment, used by qualified engineers and technicians has enabled EXXELIA TECHNOLOGIES to design and develop high-quality products that meet market requirements.

TERMINOLOGIE

Capacité nominale (C_R).

Les valeurs préférentielles de la capacité nominale sont prises dans les séries spécifiées en CEI 63.

Tolérances sur la capacité nominale.

Les tolérances préférentielles sur la capacité nominale sont indiquées dans le tableau 3.

Tension nominales (U_R) .

La tension nominale est la tension continue maximale qui peut être appliquée en permanence aux bornes d'un condensateur, les valeurs préférentielles sont : 63 V- 100 V- 160 V- 250 V- 400 V- 500 V- 630 V- 1000 V- 1600 V- 2000 V- 2500 V- 3000 V.

Autres catégories de condensateurs

En dehors de la norme NF C 83120, EXXELIA TECHNOLOGIES réalise des condensateurs répondant, pour les mêmes applications, aux normes EUROPÉENNES ou AMÉRICAINES telles que MIL C 5 ou MIL PRF 39001. De nombreuses autres fabrications spéciales ou des condensateurs au mica de style «bouton», mica de puissance, mica pour impulsion et des chips au mica répondent aux cahiers des charges clients ou à des spécifications

QUALITÉ/FIABILITÉ

Les procédures éditées par la Direction Qualité sont conformes aux exigences des normes ISO 9001 & EN 9100. Des moyens d'investigation sont utilisés pour contrôler et suivre la qualité des matières premières utilisées ainsi que les produits réalisés.

- Microscope électronique à balayage
- Spectrophotomètre infrarouge
- Analyse thermique différentielle
- Viscosimètres
- Microscopes métallographiques
- Radiographie rayons X
- Chromatographe en phase gazeuse
- Bancs de test en température
- Bancs de test en vibrations/chocs
- Bancs de test automatiques (Capa, Tg d, Ri en vieillissement).

Ces équipements, utilisés par des ingénieurs et techniciens qualifiés, ont permis à EXXELIA TECHNOLOGIES d'étudier et de développer des produits de haute qualité répondant aux besoins du marché.

for / pour CR > 10 pF	for / pour CR ≤ 10 pF
± 0,5 %	± 0,25 pF
± 1 %	± 0,5 pF
± 2 %	± 1 pF
± 3 %	± 2 pF
± 10 %	
± 20 %	
± 0,25 pF	

Table 3 / Tableau 3

Voltage marking codes Code de marquage des tensions	A	В	С	D	E	F
Rated voltage (V_{DC}) Tension nominale (V_{CC})	63	160	250	300	400	500

Voltage marking codes

This table concerns certain mica capacitor models

Code de marquage des tensions


Le tableau de marquage concerne certains modèles de condensateurs mica

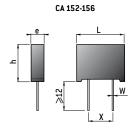
SILVERED MICA CAPACITORS

CONDENSATEURS AU MICA ARGENTÉ

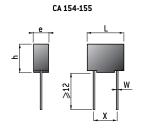
CA 15 - CA 20 CA 30 - CA 35 - CA 40

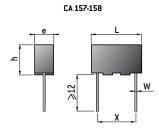
ELECTRICAL CHARACTERISTICS				CARACTÉRISTIQUES ÉLECTRIQUES
Operating temperature		− 55°C+125°C		Température d'utilisation
Climatic category		55/125/56		Catégorie climatique
Rated voltage U _{RC}		63 V to 500 V		Tension nominale U _{RC}
Test voltage		2,5 U _{RC}		Tension de tenue
D.F. tangent δ at 1 MHz	C _R < 10 pF	50.10-4	C _R < 10 pF	Tangente δ de l'angle de pertes à 1 MHz
	10 pF ≤ C_R ≤ 25 pF	30.10-4	10 pF ≤ C _R ≤ 25 pF	
	$25 \text{ pF} < C_R \le 100 \text{ pF}$	20.10-4	25 pF < C _R ≤ 100 pF	
	100 pF < C_R ≤1000 pF	10.10-4	100 pF < C _R ≤1000 pF	
at 1 kHz	1000 pF < C _R	10.10-4	1000 pF < C _R	à 1 kHz
Insulation resistance	C _R <10 nF	≥ 100 000 MΩ	C _R <10 nF	Résistance d'isolement
	C _R ≥ 10 nF	≥ 1000 MΩ. µ F	C _R ≥ 10 nF	
Class	(CA 15 -CA 20)	1-2-3-4	(CA 15 -CA 20)	Classe
	(CA 30 -CA 35 -CA 40)	3-4	(CA 30 -CA 35 -CA 40)	
In accordance to standards : CECC 3130	1 – UTE C 83120 – CCTU 0201B		Conformes aux spécifications des norme	es CECC 31301 – UTE C 83120 – CCTU 0201B

Standard	CAPACITAN	ICE VALUES A	AND RATED V	OLTAGE (D.C.)				VALEURS DE CAPACITÉ ET DE TENSION (U _{RC})		
model <i>Modèle</i>		Dimensio	ons (mm)		6:	3 V	30	0 V	500 V		
normalisé	L	h	е	w	C _R min.	C _R max.	C _R min.	C _R max.	C _R min.	C _R max.	
CA 15	13,1	7	5	0,6	1 200 pF	4 700 pF	4,7 pF	1 000 pF	-	-	
CA 20	20	12	5,6	0,8	5 600 pF	15 nF	2 700 pF	4 700 pF	4,7 pF	2 200 pF	
CA 30	20,5	20,5	6,5	1	-	-	-	-	470 pF	3 300 pF	
CA 35	20,5	20,5	8	1	-	-	8 200 pF	15 nF	3 300 pF	8 200 pF	
CA 40	25	15	8	1	-	-	8 200 pF	15 nF	3 300 pF	8 200 pF	
Tolerances or	± 1 n dimensions	± 1	± 0,5 érances dim	+ 10% -0,05 ensionnelles			$\pm~10\%$ - $\pm~5\%$ - \pm Capacitance tolerances σ	2% - ± 1% - ± 1 pF / Tolérances sur capacit	é		


HOW TO ORDER			EXEMPLE DE CODIFICATION À LA COMMANDE
Model	Capacitance in pF, nF	Tolerance	Rated voltage (U _{DC})
CA 15	100 pF	±5%	300 V
Modèle	Capacité en pF, nF	Tolérance	Tension nominale (U _{RC})

SILVERDED MICA CAPACITORS


CA 152 - CA 154 - CA 155 CA 156 - CA 157 - CA 158



DIELECTRIC Silvered Mica epoxy resin molded

MARKING model capacitance tolerance Rated voltage (except CA 152) Class (except CA 152)

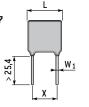
DIÉLECTRIQUE Mica argenté moulé résine époxy

MARQUAGE modèle capacité tolérance Tension nominale (sauf CA 152) Classe (sauf CA 152)

ELECTRICAL CHARACTERISTICS				CARACTÉRISTIQUES ÉLECTRIQUES
Operating temperature		− 55°C+125°C		Température d'utilisation
Climatic category	(CA 152-158)	55/125/21	(CA 152-158)	Catégorie climatique
	(CA 154-155-156-157)	55/125/56	(CA 154-155-156-157)	
Rated voltage U _{RC}		63 V to 500 V		Tension nominale U _{RC}
Test voltage		2,5 U _{RC}		Tension de tenue
D.F. tangent δ		see Fig. 2 / Voir Fig. 2		Tangente δ de l'angle de pertes
Insulation resistance	C _R <10 nF	≥ 100 000 MΩ	C _R <10 nF	Résistance d'isolement
	C _R ≥ 10 nF	≥ 1000 MΩ. µ F	C _R ≥ 10 nF	
Class		3-4		Classe

Stan	dard	CAPACIT	ANCE VALI	JES AND R	ATED VOL	TAGE (D.C	.]									VALE	URS DE C	APACITÉ E1	DE TENS	ION (U _{rc})
mo Mod			Dim	ensions (mm)		63	3 V	10	10 V	16	160 V 250 V		30	0 V	40	10 V	50)O V	
norm		L	h	е	Х	W	C _R min.	C _R max.												
CA 1	152	6	6,5	3,5	2,54	0,5	470 pF	680 pF	-	-	220 pF	680 pF	-	-	-	-	-	-	-	-
CA 1	154	9,4	8	5	5,08	0,6	220 pF	1 500 pF			-	-	220 pF	1 500 pF						
CA:	155	12,2	9,5	5,1	7,62	0,6	-	-	-	-	-		2 200 pF	10 nF	-	-	220 pF	4 700 pF	-	-
CA 1	156	17,2	15,5	5,5	10	0,8	-	-	-	-	5 600 pF	15 nF	2 200 pF	4 700 pF	-	-	-	-	-	-
CA:	157	20,5	20,5	8	8	1	2 700 pF	15 nF	=	-	-	-	-	-	-	-	=	-	560 pF	4 700 pF
	CA 172	13,3	9,1	2,5	10,16	0,6	-	-	-	-	-	-	-	-	220 pF	1 000 pF	-	-	-	-
CA	CA 173	13,3	9,1	2,5	10,16	0,6	-	=	10 nF	10 nF	6 800 pF	8 200 pF	2 700 pF	5 600 pF	1 800 pF	2 200 pF	-	=	-	-
158	CA 174	20,2	19,1	5	17,78	0,8	-	-	33 nF	47 nF	-	-	12 nF	27 nF	-	-	-	-	_	-
	CA 175	20,2	19,1	7,6	17,78	0,8	-	-	56 nF	100 nF	-	_	-	-	-	-	-	-	-	-
		max.	max.	max.	±0,2	+ 10% -0,05								2% - ± 1%						
olerai	nces on	dimensio	ns	Tolérand	ces dimen	sionnelles	s				Сар	acitance to	olerances	/ Tolérance	es sur cap	acité				

HOW TO ORDER			EXEMPLE DE CODIFICATION À LA COMMANDE
Model	Capacitance in pF, nF	Tolerance	Rated voltage (UDC)
CA 154	1000 pF	± 5%	63ww V
Modèle	Capacité en pF, nF	Tolérance	Tension nominale (U_{RC})

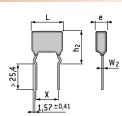

SILVERED MICA CAPACITORS CONDENSATEURS AU MICA ARGENTÉ

CM 04...CM 12 CMR 03...CMR 07

CM 04 to/à CM 08 CMR 03 to/à CMR 07

DIELECTRIC

MARKING


model capacitance Silvered Mica resin dipped tolerance rated voltage

DIÉLECTRIQUE

Mica argenté enrobé résine ther modur cissable

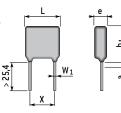
CM 09 to/à CM 12

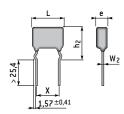
MARQUAGE

modèle capacité tolérance tension nominale

		rated voltage		Chision norminale
ELECTRICAL CHARACTERISTICS				CARACTÉRISTIQUES ÉLECTRIQUES
Operating temperature		– 55°C+125°C or – 55°C+150°C		Température d'utilisation
CMR 03 only		− 55°C+125°C		CMR 03 uniquement
Rated voltage U _{RC}		50 V-100 V-300 V-500 V		Tension nominale U _{RC}
Test voltage (5 s)		2 U _{RC}		Tension de tenue (5 s)
D.F. tangent δ for CM		see / voir MIL C 5/18 D		Tangente δ de l'angle de pertes pour CM
for CMR		see / voir MIL PRF 39001/5 B		pour CMR
Insulation resistance at 25°C	C _R <10 nF	\geq 100 000 M Ω	C_R < 10 nF	Résistance d'isolement à 25℃
	C _R ≥ 10 nF	≥ 1000 MΩ. µ F	$C_R \ge 10$ nF	
at 125°C	$C_R < 3300 \text{ nF}$	≥ 1000 MΩ	C _R < 3300 nF	à 125℃
	C _R ≥ 3300 nF	≥ 33 MΩ. µ F	$C_R \ge 3300 \text{nF}$	
at 150°C	C _R <1500 nF	≥ 5000 MΩ	C _R <1500 nF	à 150℃
	$C_R \ge 1500 \text{nF}$	≥ 7,5 MΩ. µ F	$C_R \ge 1500 \text{ nF}$	
Class		See page 118 / Voir page 118		Classe
In accordance to standards : MIL STD 202	- MIL C 5 - MIL PRF 39001	•	Conformes aux spécifications des i	normes MIL STD 202 - MIL C 5 - MIL PRF 39001

Standard	CAPACIT	ANCE VAL	UES AND	RATED VO	LTAGE (D.	C.)									VAL	EURS DE CAPA	CITÉ ET DE TE	NSION (U _{rc})
model <i>Modèle</i>					Dimensio	ons (mm)					5	D V	10	10 V	30	10 V	50	10 V
normalisé	Į.		(е	h ₁	h ₂	a	х	W ₁	W ₂	C _R min.	C _R max.						
		6,86		2,79	4,83		1,98	3,05	0,5		22 pF	36 pF	18 pF	20 pF	1 pF	12 pF	-	_
		6,86		3,05	4,83		1,98	3,05	0,5		39 pF	56 pF	22 pF	27 pF	15 pF	15 pF	_	-
		6,86		3,05	5,08		1,98	3,05	0,5		62 pF	82 pF	30 pF	43 pF	18 pF	24 pF	-	-
		6,86		3,30	5,08		1,98	3,05	0,5		91 pF	120 pF	47 pF	56 pF	27 pF	33 pF	-	-
		6,86		3,30	5,33		1,98	3,05	0,5		130 pF	130 pF	62 pF	62 pF	36 pF	39 pF	-	_
		6,86		3,56	5,33		1,98	3,05	0,5		150 pF	180 pF	68 pF	91 pF	43 pF	51 pF	-	-
		6,86		3,56	5,59		1,98	3,05	0,5				100 pF	110 pF			-	-
CMR 03		6,86		3,81	5,59		1,98	3,05	0,5		200 pF	220 pF			56 pF	68 pF	-	-
		6,86		4,06	5,59		1,98	3,05	0,5		240 pF	240 pF	120 pF	120 pF		·	-	-
		6,86		4,06	5,84		1,98	3,05	0,5						75 pF	82 pF	-	-
		6,86		4,06	5,84		1,98	3,05	0,5		270 pF	270 pF	130 pF	130 pF			-	_
		6,86		4,32	5,84		1,98	3,05	0,5		300 pF	300 pF	150 pF	150 pF	91 pF	91 pF	-	-
		6,86		4,32	6,10		1,98	3,05	0,5				160 pF	160 pF			-	-
		6,86		4,57	6,10		1,98	3,05	0,5		330 pF	360 pF	170 pF	180 pF	100 pF	110 pF	-	-
		6,86		4,83	6,35		1,98	3,05	0,5		390 pF	400 pF	200 pF	200 pF	120 pF	120 pF	-	_
CM04/09-CMR 04	7,62	9,91	3,56	5,59	9,65	12,7	3,18	3,81	0,4	0,5			330 pF	390 pF	270 pF	300 pF	200 pF	240 pF
CM 05-CM 10	10,16	11,94	2,79	5,33	9,91	12,7	3,18	5,72	0,6	0,8	-	-	-	-	-	-	270 pF	330 pF
CMR 05	10,16	11,94	3,05	5,59	10,16	12,7	3,18	5,72	0,6	0,8	-	-	-	-	-	-	360 pF	390 pF
	13,97	16,26	2,29	5,08	12,95	17,07	3,58	8,89	0,8	0,8	-	-	-	-	-	-	430 pF	470 pF
	14,22	16,51	2,29	5,08	12,95	17,07	3,58	8,89	0,8	0,8	-	_	_	_	_	_	610 pF	620 pF
	14,22	16,51	2,54	5,33	12,95	17,07	3,58	8,89	0,8	0,8	-	-	-	_	-	_	680 pF	910 pF
	14,22	16,51	2,79	5,59	13,21	17,07	3,58	8,89	0,8	0,8	-	-	-	-	-	-	1 000 pF	1 100 pF
	14,48	16,78	2,79	5,59	13,21	17,07	3,58	8,89	0,8	0,8	-	_	_	_	-	_	1 200 pF	1 300 pF
	14,48	16,78	3,05	5,84	13,21	17,07	3,58	8,89	0,8	0,8	-	_	-	_	-	_	1 500 pF	1 500 pF
	14,48	16,78	3,05	5,84	13,46	17,07	3,58	8,89	0,8	0,8	-	_	-	_	-	_	1 600 pF	1 600 pF
CM 06	14,73	17,02	3,30	6,10	13,46	17,07	3,58	8,89	0,8	0,8	-	-	-	_	-	-	1800 pF	2 000 pF
CM 11	14,73	17,02	3,56	6,35	13,46	17,07	3,58	8,89	0,8	0,8	-	-	-	_	-	-	2 200 pF	2 200 pF
CMR 06	14,73	17,02	3,81	6,60	13,72	17,07	3,58	8,89	0,8	0,8	-	-	-	_	-	-	2 400 pF	2 400 pF
	14,99	17,27	4,06	6,86	13,72	17,07	3,58	8,89	0,8	0,8	-	-	-	-	-	-	2 700 pF	2 700 pF
	14,99	17,27	4,32	7,11	13,97	17,07	3,58	8,89	0,8	0,8	-	-	-	_	-	-	3 000 pF	3 000 pF
	14,99	17,27	4,57	7,37	13,97	17,07	3,58	8,89	0,8	0,8	-	-	-	_	-	-	3 300 pF	3 300 pF
	14,99	17,27	4,83	7,62	14,22	17,07	3,58	8,89	0,8	0,8	-	-	-	-	-	-	3 600 pF	3 600 pF
	15,24	17,53	5,08	7,87	14,22	17,07	3,58	8,89	0,8	0,8	-	-	-	_	-	-	3 900 pF	3 900 pF
	15,24	17,53	5,59	8,38	14,48	17,07	3,58	8,89	0,8	0,8	-	_	-	_	-	_	4 300 pF	4 300 pF
	15,49	17,78	5,59	8,89	14,73	17,07	3,58	8,89	0,8	0,8	-	_	-	-	-	-	4 700 pF	4 700 pF
	17,27	19,81	3,81	7,11	21,84	26,19	3,58	10,80	1	1	-	-	-	_	-	-	5 100 pF	5 100 pF
	17,27	19,81	3,81	7,37	22,10	26,19	3,58	10,80	1	1	-	-	-	_	-	-	5 600 pF	6 200 pF
	17,27	19,81	3,81	7,62	22,10	26,19	3,58	10,80	1	1	-	_	-	_	-	_	6 800 pF	6 800 pF
CM 07	17,53	20,07	3,81	7,87	22,35	26,19	3,58	10,80	1	1	-	-	-	_	-	_	7 500 pF	7 500 pF
CM 12	17,53	20,07	3,81	8,13	22,35	26,19	3,58	10,80	1	1	-	-	-	_	-	-	8 200 pF	8 200 pF
CMR 07	17,53	20,07	3,81	8,38	22,35	26,19	3,58	10,80	1	1	-	-	-	_	-	_	9 100 pF	9 100 pF
	17,78	20,32	5,08	8,64	22,61	26,19	3,58	10,80	1	1	-	-	-	_	-	_	10 000 pF	10 000 pF
	17,78	20,32	5,08	8,89	22,61	26,19	3,58	10,80	1	1	-	-	-	_	-	_	11 000 pF	11 000 pF
	17,78	20,32	5,08	9,14	22,61	26,19	3,58	10,80	1	1	-	-	-	_	-	_	12 000 pF	12 000 pF
	min.	max.	min.	max.	max.	max.	max.	max.	+ 10%	+ 10%								
Tolerances on	dimensi	ions					<u>T</u> ol	érances	0,00									


MPLE DE CODIFICATION À LA COMMANDE HOW TO ORDER Model Capacitance in pF, nF Tolerance Operating T Rated voltage (V_{DC}) 500 V (D) CM 04 120 pF (121) ±2% (G) 0 T° d'utilisation Tension nominale (V_{CC}) Modèle Capacité en pF, nF Tolérance


CM 04...CM 12 CMR 03...CMR 07

CM 04 to/à CM 08 CMR 03 to/à CMR 07

CM 09 to/à CM 12

DIELECTRICSilvered Mica resin dipped

MARKING

model capacitance tolerance rated voltage

DIÉLECTRIQUE

Mica argenté enrobé résine ther modur cissable MARQUAGE

modèle capacité tolérance tension nominale

		rated voltage		tension nominale
ELECTRICAL CHARACTERISTICS				CARACTÉRISTIQUES ÉLECTRIQUES
Operating temperature		– 55°C+125°C or – 55°C+150°C		Température d'utilisation
CMR 03 only		− 55°C+125°C		CMR 03 uniquement
Rated voltage U _{RC}		50 V-100 V-300 V-500 V		Tension nominale U _{RC}
Test voltage (5 s)		2 U _{RC}		Tension de tenue (5 s)
D.F. tangent δ for CM		see / voir MIL C 5/18 D		Tangente δ de l'angle de pertes pour CM
for CMR		see / voir MIL PRF 39001/5 B		pour CMR
Insulation resistance at 25℃	C _R < 10 nF	≥ 100 000 MΩ	C_R < 10 nF	Résistance d'isolement à 25℃
	C _R ≥ 10 nF	≥ 1000 MΩ. µ F	$C_R \ge 10$ nF	
at 125°C	C_{R} < 3300 nF	≥ 1000 MΩ	C _R < 3300 nF	à 125℃
	$C_R \ge 3300 \text{nF}$	≥ 33 MΩ. µ F	$C_R \ge 3300 \text{nF}$	
at 150°C	C _R <1500 nF	≥ 5000 MΩ	C _R <1500 nF	à 150℃
	C _R ≥ 1500 nF	≥ 7,5 MΩ. µ F	$C_R \ge 1500 \text{ nF}$	
Class		See page 118 / Voir page 118		Classe
In accordance to standards : MIL STD 202	- MIL C 5 - MIL PRF 39001		Conformes aux spécifications des r	normes MIL STD 202 - MIL C 5 - MIL PRF 39001

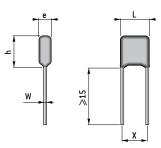
TOLERANCE ON CAPA	CITANCE AND CLASSES	S			TOLÉRANCE SUR C	APACITÉ ET CLASSES
Capacitance <i>Capacité</i> C _R	CMR 03	CM 04 CM 09 CMR 04	CM 05 CM 10 CMR 05	CM 06 CM 11 CMR 06	CM 07 CM 12 CMR 07	CM 08 CM 13 CMR 08
1 pF - 24 pF 27 pF - 400 pF 27 pF - 51 pF	± 0,5 pF ± 5 % ± 2 %					
1 pF - 11 pF 12 pF - 390 pF 27 pF - 390 pF 51 pF - 390 pF		± 0,5 pF ± 5 % ± 2 % ± 1 %	± 0,5 pF ± 5 % ± 2 % ± 1 %			
430 pF - 4,7 nF 430 pF - 4,7 nF 430 pF - 4,7 nF				± 5 % ± 2 % ± 1 %		
5,1 nF - 20 nF 5,1 nF - 20 nF 5,1 nF - 20 nF					± 5 % ± 2 % ± 1 %	
22 nF - 91 nF 22 nF - 91 nF 22 nF - 91 nF						± 5 % ± 2 % ± 1 %

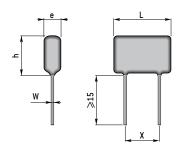
Capacitance <i>Capacité</i> C _R	Class Classe	Coefficient température (ppm/°C)
1 pF - 18 pF	С	- 200 + 200
20 pF - 82 pF	Е	- 20 + 100
91 pF - 91 nF	F	0 + 70

CODES OF VOLTAGE,	TOLERANCE AND TEMP	ERATURE CODES	DE TENSION, TOLÉRANCE ET TEMPÉRATURE
Voltage (clear) Tension (en clair)	Voltage (code) Tension (en code)	Tolerance on C _R (clear) Tolérance sur C _R (en clair)	Tolerance on C _R (code) Tolérance sur C _R (en code)
50 V	Υ	± 0,5 pF	D
100 V	Α	± 5 %	J
300 V	С	± 2 %	G
500 V	D	± 1 %	F

Operating temperature (clear) Température d'utilisation (en clair)	Operating temperature (code) Température d'utilisation (en code)
− 55°C + 125°C	0
− 55°C + 150°C	Р

HOW TO ORDER EXEMPLE DE CODIFICATION À LA COMMAN											
Model	Capacitance in pF, nF	Tolerance	Operating T°	Rated voltage (V_{DC})							
CM 06	680 pF (681)	±1% (F)	P	500 V (D)							
Modèle	Capacité en pF, nF	Tolérance	T° d'utilisation	Tension nominale (V _{CC})							


SILVERED MICA CAPACITORS

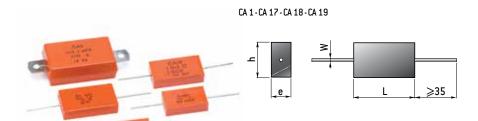

CONDENSATEURS AU MICA ARGENTÉ

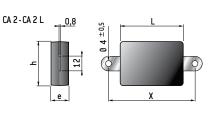
CONDENSATEURS AU MICA ARGENTÉ

MF 1 - MF 2 - MF 3 MF 4 - MF 5

DIELECTRIC Silvered Mica resin dipped MARKING model capacitance tolerance Class **DIÉLECTRIQUE**Mica argenté
enrobé résine
thermodurcissable

MARQUAGE modèle capacité tolérance Classe


Operating temperature		− 55°C+125°C		Température d'utilisation
1 0 1				Catégorie climatique
Climatic category		55/125/56		
Rated voltage U_{RC}		63 V to 1000 V		Tension nominale U _{RC}
Test voltage		2 U _{RC}		Tension de tenue
D.F. tangent δ		See Fig. 2 / Voir Fig. 2		Tangente δ de l'angle de pertes à 1 MHz
Insulation resistance	C _R <10 nF	≥ 100 000 MΩ	C _R <10 nF	Résistance d'isolement
	C _R ≥ 10 nF	≥ 1000 MΩ. µ F	$C_R \ge 10 \text{ nF}$	
Class		1-2-3-4		Classe
*See table : Option X = 5,08 mm (suffix N)			*	Voir tableau : Option X = 5,08 mm (suffixe N)


Standard	CAPACITAN	CE VALUES A	AND RATED V	OLTAGE (D.C.)			VALEURS DE CAPACITÉ ET DE TENSION (U _{RC})												
model <i>Modèle</i>	Dimensions (mm)					63 V		250 V		500 V		1 000 V								
normalisé	L	h	е	Х	W	C _R min.	C _R max.	C _R min.	C _R max.	C _R min.	C _R max.	C _R min.	C _R max.							
MF1	5	6	2,5	2.54	0,5	4,7 pF	470 pF	4,7 pF	-	-		-	-							
MLT	5	В	4	2,54	0,5	560 pF	1 200 pF	1 000 pF	-	-	-	-	-							
MF 2	9	7.5	2,5	5,08	F 00	F 00	F 00	F.00	F 00	F 00	F 00	0.0	-	-	4,7 pF	820 pF	-	-	-	-
MF Z	9	7,5	5		0,6	-	-	1 000 pF	4 700 pF	-	-	-	-							
мгэ	44.5	40	2,5	762	7.00	702	7.00	7.02	7.00	7.00	7.02	0.0	-	-	-	-	4,7 pF	820 pF	-	-
MF3	11,5	10	5	7,62	0,6	-	-	-	-	1 000 pF	12 nF	-	-							
MF 4	12,5	10	2,5	40.46	10,16	0,8	-	-	4,7 pF	4 700 pF	4,7 pF	2 200 pF	-	-						
MF4	12,5	10	5	10,16	0,8	-	-	5 600 pF	12 nF	2 700 pF	8 200 pF	-	-							
МЕЕ	47	42	2,5	40.46	40.40	40.40	0.40	-	-	-	-	-	-	4,7 pF	470 pF					
MF 5	17	12	5	10,16	10,16 0,16	-	_	15 nF	33 nF	10 nF	22 nF	560 pF	8 200 pF							
	max.	max.	max.	±0,3	+ 10% -0,05	± 10% - ± 5% - ± 2% - ± 1% - ± 1 pF														
Tolerances or	dimensions		Tol	érances dim	ensionnelles	Consider the Asian and Asi														

HOW TO ORDER EXEMPLE DE CODIFICATION À LA COMM											
Model	Capacitance in pF, nF	Tolerance	Rated voltage (UDC)								
MF 1	100 pF	±5%	63 V								
Modèle	Capacité en pF, nF	Tolérance	Tension nominale (U _{RC})								

CA 1 - CA 2 - CA 2 L CA 17 - CA 18 - CA 19

HIGH VOLTAGE / HAUTE TENSION

DIELECTRIC

Silvered Mica epoxy resin molded

MARKING

model capacitance tolerance Rated voltage Class

Date-code (year-month)

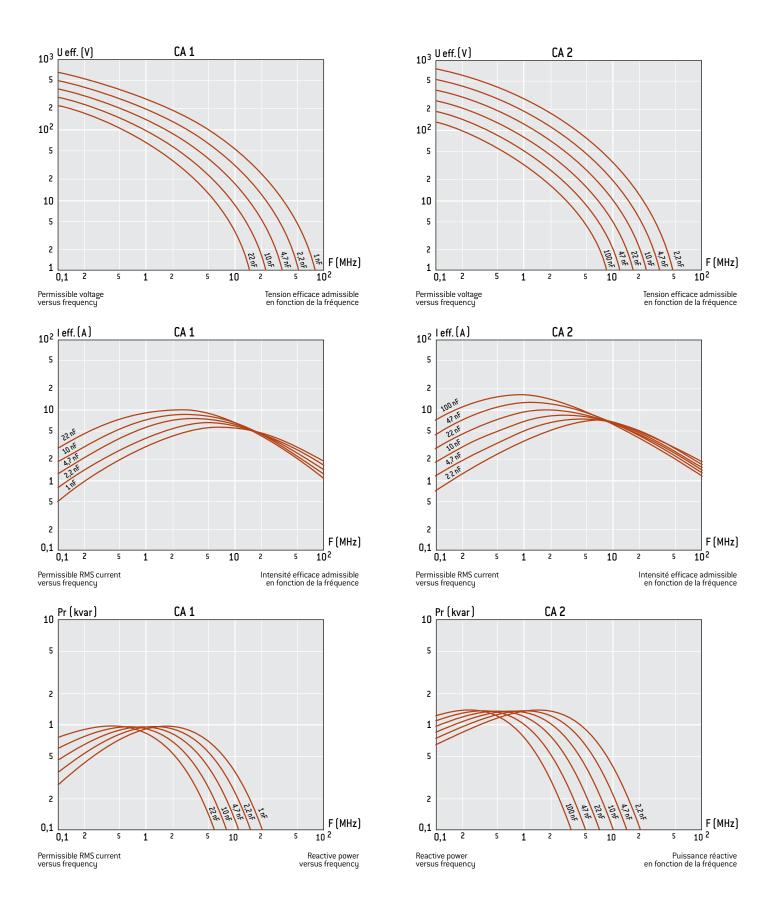
DIÉLECTRIQUE MARQUAGE

Mica argenté moulé résine époxy

modèle capacité tolérance Tension nominale Classe

Date-code (année-mois)

ELECTRICAL CHARACTERISTICS				CARACTÉRISTIQUES ÉLECTRIQUES
Operating temperature		– 55°C+125°C		Température d'utilisation
Climatic category		55/125/56		Catégorie climatique
Rated voltage U _{RC}		500 V to 5000 V		Tension nominale U_{RC}
Test voltage (CA 1-CA 2)	$U_{RC} \le 1000 \text{ V}$	2,5 U _{RC}	$U_{RC} \le 1000 V$	Tension de tenue (CA 1-CA 2)
	$U_{RC} = 2000 V$	2 U _{RC}	$U_{RC} = 2000 V$	
	$U_{RC} = 5000 \text{ V}$	1,5 U _{RC}	$U_{RC} = 5000 V$	
Test voltage (CA 17-CA 18-CA 19)		2 U _{RC}		Tension de tenue (CA 17-CA 18-CA 19)
D.F. tangent δ		See Fig. 2 / Voir Fig. 2		Tangente δ de l'angle de pertes
Insulation resistance	C _R < 10 nF	≥ 100 000 MΩ	C _R <10 nF	Résistance d'isolement
	$C_R \ge 10 \text{ nF}$	≥ 1000 M Ω . μ F	$C_R \ge 10 \text{ nF}$	
Class (CA 1-CA 17-CA 18)		1-2-3-4		Classe (CA 1-CA 17-CA 18)
(CA 2-CA 19)		3-4		(CA 2-CA 19)


Standard	CAPACITAI	ICE VALUES	AND RATED	VOLTAGE (D	.c.)					VALI	EURS DE CAPA	CITÉ ET DE TE	ENSION (U _{RC})		
model <i>Modèle</i>	Dimensions (mm)					300 V 500 V		1 000 V		2 000 V		5 000 V			
normalisé	L	h	е	Х	W	C _R min.	C _R max.	C _R min.	C _R max.						
CA 1	33±1	20±1	10±1	-	1	-	=	1 000 pF	22 nF	470 pF	10 nF	100 pF	3 900 pF	10 pF	1 000 pF
CA 2 L	48,7 max.	30,5 max.	18,5 max.	59±1	-	-	-	27 nF	100 nF	12 nF	22 nF	1 500 pF	10 nF	-	-
CA 2	43±1	30±1	12±1	59±1	-	-	-	33 nF	100 nF	10 nF	47 nF	1 000 pF	22 nF	1 000 pF	10 nF
CA 17	21±0,5	11 ^{±0,5}	6±0,5	-	0,8	560 pF	1 000 pF	4,7 pF	470 pF	-	-	-	-	-	-
CA 18	27±0,5	15 ^{±0,5}	7,5±0,5	-	1	-	=	390 pF	1 500 pF	4,7 pF	330 pF	-	=	-	=
CA 19	33±0,5	17,5±0,5	8±0,5	-	1	-	=	1 800 pF	22 nF	390 pF	1 500 pF	-	-	-	-
+ 10% -0.05															

Capacitance tolerances / Tolérances sur capacité Tolérances dimensionnelles Tolerances on dimensions

HOW TO ORDER EXEMPLE DE CODIFICATION À LA COMMAN											
Model	Capacitance in pF, nF	Tolerance	Rated voltage (UDC)								
CA 1	100 pF	± 5%	500 V								
Modèle	Capacité en pF, nF	Tolérance	Tension nominale (U _{RC})								

CA1-CA2

Tel:+33 (0)1 49 23 10 00

SPECIFIC CAPACITORS

CONDENSATEURS SPÉCIFIQUES

CONDENSATEURS SPÉCIFIQUES

HIGH VOLTAGE BLOCKS BLOCS HAUTE TENSION

In the domain of Professional, Military and Space applications,

EXXELIA TECHNOLOGIES designs and manufactures high-voltage blocks according to the most severe specifications.

CHARACTERISTIC FEATURES OF EXXELIA TECHNOLOGIES

SOLID-STATE BLOCKS:

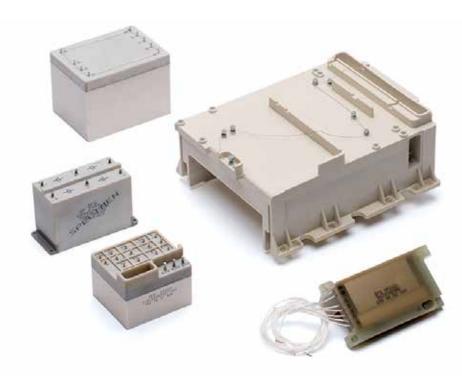
insensitiveness to the most rugged environmental conditions:

manufactured according to customer specifications.

- vibration, shock
- repeated heat cycles
 patented mounting
 capacitive and multiple functions
 long service life
 optimised volumes

réalise des blocs haute tension répondant aux spécifications les plus sévères.

Dans les domaines Professionnel, Militaire, Spatial, **EXXELIA TECHNOLOGIES** étudie et


CARACTERISTIQUES PARTICULIÈRES D'EXXELIA TECHNOLOGIES

BLOCS MONOLITHIQUES SOLIDES:

insensibilité aux environnements les plus sévères :

- vibrations, chocs
- cycles thermiques répétés mode de fixation breveté fonctions capacitives et multiples durée de vie élevée optimisation des volumes

réalisation suivant cahier des charges.

FIXATION AND TERMINALS

Epoxy-resin molded. Screw, threaded bar, inserts.

ENVIRONMENT

Air, oil, gas, vacuum, synthetic resins.

APPLICATIONS

High-voltage supply filtering, coupling, decoupling, delay lines, energy storage.

GENERAL CHARACTERISTICS

 $Function: single\ and\ multiple\ capacitors$

capacitors + resistors capacitors + inductances

capacitors + inductances + resistors

temperature range : -55°C to $+125^{\circ}\text{C}$ (standard)

possible extension - 65°C to + 200°C voltage range : 630 V to 100 kV capacitance range : 100 pF to 30 μ F

volume : up to 2 dm³

stored energy: up to 1000 joules volume energy: up to 200 joules/dm³.

PRÉSENTATION

Moulage résine époxy. Sorties et fixations par inserts, tiges filetées.

ENVIRONNEMENT

Air, huiles, gaz, vide, résines synthétiques.

APPLICATIONS

Filtrage d'alimentation haute tension, couplage, découplage, lignes à retard, stockage d'énergie.

CARACTÉRISTIQUES GÉNÉRALES

Fonction: condensateurs simples ou multiples

condensateurs + résistances condensateurs + inductances

condensateurs + inductances + résistances

gamme de températures : - 55° C à + 125° C (standard)

possibilité - 65°C à + 200°C

gamme de tensions : 630 V à 100 kV gamme de capacités : 100 pF à 30 μ F

volume : jusqu'à 2 dm³

énergie stockée : jusqu'à 1000 joules énergie volumique : jusqu'à 200 joules/dm³.

SPECIFIC CAPACITORS CONDENSATEURS SPÉCIFIQUES

CAPACITORS FOR POWER ELECTRONICS

CONDENSATEURS POUR ÉLECTRONIQUE DE PUISSANCE

OTHER PRODUCTS

EXXELIA TECHNOLOGIES designs and manufactures capacitors to the customers own specifications. The use of metal coating of a particular type, of new types of dielectric films and new synthetic oils added to «mixed» and «all-film» dielectrics enables to meet the strictest requirements :

- Power
- Current
- Voltage
- Volume energy
- Reliability

This is particularly the case in applications such as the commutation of semi-conductors and energy storage.

These specific products will meet particular requirements especially in varied domains such as :

- Electrically driven devices
- Medical equipment
- Welding
- Reproduction graphics

· Laser technology..

FABRICATIONS SPÉCIALES

EXXELIA TECHNOLOGIES étudie et réalise des condensateurs répondant aux spécifications particulières de ses clients. L'utilisation de métallisations spéciales, l'emploi de nouveaux films, l'association de nouvelles huiles de synthèse avec des diélectriques "mixtes" et "tout film" permettent de répondre aux exigences les plus sévères :

- Puissance
- Courants
- Tensions
- Énergie volumique
- Fiabilité

C'est notamment le cas pour l'aide à la commutation des semi-conducteurs et le

Ces produits spécifiques satisfont un besoin particulier notamment dans des domaines très variés tels que :

- La traction électrique
- Le matériel médical
- La reprographie
- Le soudage

Capacitors for industrial application (other products) Condensateurs pour applications industrielles (fabrications spéciales)

93, rue Oberkampf F-75540 PARIS CEDEX 11 • FRANCE Tel.:+33 (0)1 49 23 10 00 info@exxelia.com

www.exxelia.com

EXXELIA DEARBORN

Angl 1221 N. Highway 17-92

Longwood, FL 32750 • USA

Tel.: (407) 695-6562

sales@dearbornelectronics.com

EXXELIA MAROC

Angle boulevard Alkahrabae et rue Le Caire Quartier Industriel Ain Sebaa CASABLANCA Sidi Bernoussi 20600 • MAROC Tel.: +00212 22 66 70 00

info@exxelia.com

EXXELIA MICROSPIRE

16, Parc d'Activités du Beau Vallon
F-57970 ILLANGE • FRANCE
Tel.: +33 (0)3 82 59 13 33

info@exxelia.com

EXXELIA SIC SAFCO

Z.I. de Brais - BP 194

F - 44604 SAINT-NAZAIRE CEDEX • FRANCE

Tel.: +33 (0)2 40 01 26 51

info@exxelia.com

EXXELIA TANTALUM

Z.I. de Brais - BP 194

F-44604 SAINT-NAZAIRE CEDEX • FRANCE
Tel.: +33 (0)2 40 01 26 51

info@exxelia.com

EXXELIA TECHNOLOGIES

Headquarters

93, rue Oberkampf
F-75540 PARIS CEDEX 11 • FRANCE
Tel.:+33 (0)1 49 23 10 00
info@exxelia.com

Plants

Z.A.E. du Chêne Saint-Fiacre
1, rue des Temps Modernes
F-77600 CHANTELOUP-EN-BRIE • FRANCE
Tel.: +33 (0)1 60 31 70 00

105, rue du Général Leclerc - BP 33 F-67441 MARMOUTIER Cedex • FRANCE Tel.:+33 (0)3 88 70 62 00

EXXELIA TEMEX
Parc Industriel Bersol 1
Voie Romaine
F-33600 PESSAC • FRANCE
Tel.: +33 (0)5 56 46 66 66

info@exxelia.com

EXXELIA VIETNAM
Unit 2A, Standard Factory No. 2,
Road 15, The Tan Thuan EPZ,
Dist.7, Ho Chi Minh City • VIETNAM
Tel.: 00 84 8 3770 1226
info@exxelia.com

Headquarters

93, rue Oberkampf F-75540 PARIS CEDEX 11 • FRANCE

Tel.: +33 (0)1 49 23 10 00

info@exxelia.com

www.exxelia.com

Plants

Z.A.E. du Chêne Saint-Fiacre

1, rue des Temps Modernes
F-77600 CHANTELOUP-EN-BRIE • FRANCE
Tel.: +33 (0)1 60 31 70 00

105, rue du Général Leclerc - BP 33 F-67441 MARMOUTIER Cedex • FRANCE Tel.: +33 (0)3 88 70 62 00

