New Invar Tuning Elements with Self-Locking System

Exxelia announces the release of new world-unique invar tuning elements featuring a self-locking system. The product has been designed to respond to increasing demand for high frequency tuning elements for space applications.


Working frequencies in Space applications are shifting to Ka, Ku or even Q band, while cavity filters are undergoing the general trend towards miniaturization: this context calls for a much more precise and stable tuning element now offered by Exxelia Temex, daughter company of Exxelia, through their last innovative and unrivalled solution to incorporate a self-locking system into their Invar Tuning Elements.
Invar-36 is a unique Iron-Nickel alloy (64 % Fe / 36 % Ni) sought-after for its very low coefficient of thermal expansion. With 1.1 ppm. K–1 between 0°C and 100°C, Invar-36 is about 17 times more stable than Brass which is the most traditional and common alloy Tuning Elements are made of. The working temperature range in Space is so wide that this property becomes essential for a reliable and stable cavity filter tuning. Self-locking system is a technology commonly used on Tuning Element made of Brass or other soft “easy-to-machine” alloys but is innovative and pretty advanced when applied to hard and tough Invar 36. The design consists of two threaded segments separated by two parallel slots. After cutting both parallel slots, the rotor is compressed in its length in order to create a plastic deformation. Thus, an offset is induced between the two threaded segments which generates a constant tensile stress in the rotor from the moment threaded segments are screwed.

Published on 23 Oct 2016 by Marion Van de Graaf

Exxelia's Smart Magnetic: Breakthrough technology for more compact and powerful converters

This advance makes it possible to design more compact, lighter converters. However, the advantages of this technology are not limited to these fundamental aspects. In this article, we will explore in detail the multiple functional, economic and environmental benefits offered by Exxelia's Smart Magnetic technology.   Functional advantages for increased reliability: The Smart Magnetics project makes it possible in particular to optimize the Dual Active Bridge topology which requires the combination of a transformer and a choke. The Dual Active Bridge converter is a technology that is becoming widespread because it allows bidirectional power transmission. This meets the challenges of electrical systems (recovery + supply of energy), Integrating the Dual Active Bridge (DAB) transformer and choke into a single component has significant functional advantages. Unlike assembling two separate components, using an integrated component eliminates interconnections. The repeatability and reproducibility of the processes guarantee perfect control of the electrical characteristics, and ensure optimum performance of the converter. In addition, this consolidation reduces the number of components required, which improves the reliability of the final product.   Rationalization of the value chain for optimized production costs: The Smart Magnetic project also contributes to improving the value chain through effective streamlining. By replacing two distinct components with a single component, the management of the components of the circuit is simplified. From the customer's point of view, there is only one product to supply, one product to integrate/assemble in the system. These simplifications result in high added value and increased competitiveness on the market.   Contribution to a more environmentally friendly industry: By adopting Smart Magnetic solutions, the benefits go beyond simply improving energy efficiency. This innovation also reduces the consumption of raw materials by using less material in the Smart Magnetic component compared to standard formats requiring two separate components. As a result, this technology contributes to the preservation of natural resources. In addition, Smart Magnetic responds to the challenges posed by the electrification of vehicles, whether in air, land or sea transport, by promoting the deployment of solutions that are less dependent on fossil fuels.   Various applications: The versatility of Smart Magnetic solutions makes it suitable for many applications. For example, it can be used as a bi-directional converter between batteries and circuits, for power applications or even in resonant converter topologies. It is also useful in applications requiring high current and in Multi-output flyback converters. This diverse range of applications testifies to the flexibility of the Smart Magnetic project.   A project ? Do not hesitate to contact us.